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Introduction

Daily pneumonia and influenza (P&I) deaths of 1918 pandemic
influenza in Philadelphia.
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Re-examine 1918 Daily Philadelphia P&I Deaths
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I An exponential growth phase

I Given infectious period and latent period, this rate implies R0
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What We Will Learn

I Estimate the exponential growth rate

I Fit (phenomenological or mechanistic) models to data

I Estimate R0 from the exponential growth rate
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The Exponential Growth Phase

I The 1918 pandemic epidemic curve, and most others, show an
initial exponential growth phase,

I That is, during the initial growth phase, the epidemic curve
can be modeled as

X (t) = X (0)eλt ,

where λ is the exponential growth rate, X (0) is the initial
condition.

I So, lnX (t) and the time t have a linear relationship during
the initial growth phase

lnX (t) = lnX (0) + λt .

I The exp growth rate measures how fast the disease spreads
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Example: 1665 Great Plague Deaths in London
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I Exponential growth rate decreases around week 25?
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Example: 1665 Great Plague All-cause Deaths in London
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I The decrease of the exponential growth rate in plague deaths
may be caused by under reporting
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Theoretical Exponential Growth Rate: SIR Model

S ′ = − β
N
SI , I ′ =

β

N
SI − γI .

I Near the disease free equilibrium (DFE) (N, 0)

I ′ = (β − γ)I

I This is a linear ODE, with an exponential solutions

I (t) = I (0)e(β−γ)t

I So, the exponential growth rate is λ = β − γ.

I What is the growth rate of the incidence curve X (t) = βSI?
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Theoretical Growth Rate: SEIR Model

S ′ = − β
N
SI , E ′ =

β

N
SI − σE . I ′ = σE − γI .

I Near the disease free equilibrium (DFE) (N, 0, 0)

d

dt

[
E
I

]
=

[
−σ β
σ −γ

] [
E
I

]
= J

[
E
I

]
I The exponential growth rate is

λ = ρ(J) =
1

2

(
λ+ γ +

√
(σ − γ)2 + 4βγ

)
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Theoretical Growth Rate: General Case

Assume that a disease can be modeled with
I Susceptible classes S ∈ Rm and infected classes I ∈ Rn

I parameters θ ∈ Rp.
I Assume a disease free equilibrium (DFE) (S = S∗, I = 0).

S ′ = f (S , I ; θ) , I ′ = g(S , I ; θ) , where
∂

∂S
g(S∗, 0) = 0

I Linearize about the DFE (S∗, 0):

I ′ =
∂g

∂I
(S∗, 0; θ)I .

I The exponential growth rate

λ = ρ

(
∂g

∂I
(S∗, 0; θ)

)
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Fitting an Exponential Curve

Fitting an Exponential Curve

I Model
x(t)− x(0)eλt

I Naive methods that have been widely used:
I Least square and linear regression
I Poisson regression
I Negative binomial regression

I These methods
I assume a mean that can be described by a deterministic model
I only consider observation errors around the deterministic model
I ignore the process errors are completely ignored
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Fitting an Exponential Curve

Point Estimates and Confidence Intervals

I The best estimate for (λ, x0) is called a point estimate.

I A 95% confidence interval (CI) (a, b) for λ is an interval
estimate that satisfies

Prob{λ ∈ (a, b)} = 95%

I 95% is called the confidence level. Other examples, 99% CI

I Infinitely many CI with the same confidence level (95%)

I Wider CIs means the true paramter value may differ more
widely from the point estimate

I E.g.: The 1918 pandemic influenza (fall wave) has R0 = 1.86
with 95% CI (1.82, 1.90) (Chowell et al Proc B 2008).
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Fitting an Exponential Curve

Linear Regression

x(t) = x(t)eλt ⇒ ln x(t) = ln x(0) + λt

Commonly use the least square method:

I For a data set (ti , xi ), minimize

F (λ, x0) =
n∑

t=1

(ln x(ti )− ln xi )
2

I Confidence intervals:
I Assume that ln xi are normally distributed,

I i.e., xi are log-normally distributed
I Then (λ, x0) are joint normal
I The covariance matrix is (D2F )−1.

I If xi is not log-normal, not an easy problem.
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Fitting an Exponential Curve

Poisson Regression

I For an epidemic curve (ti , xi ), xi usually not ∼ log-normal.
I If infection events have exponentially distributed waiting time,

xi are Poisson distributed.
I Poisson regression for these type of data, which is a maximum

likelihood method.
I A likelihood function is the probability of observing the data

with a given set of parameters

L({xi}ni=1|λ, x0) =
n∏

i=1

Prob(xi |λ, x0) ==
n∏

i=1

E [xi ]
xi e−E [xi ]

xi !

=
n∏

i=1

x(ti )
xi e−x(ti )

xi !
=

n∏
i=1

xxi0 e
λtixi−x0 exp(λti )

xi !
.

I Find the parameters λ, x0 that maximize L
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Fitting an Exponential Curve

Poisson Regression: Maximize Log-likelihood

I Because L is a product, it is convenient to maximize ln L,
called the log likelihood

ln L(λ, x0) =
n∑

i=1

xi ln x0 + λtixi − x0e
λti − ln(xi !) .

I Because xi are constants, drop ln(xi !) to maximize

ln L̃(λ, x0) =
n∑

i=1

xi ln x0 + λtixi − x0e
λti .

I This can only be maximized numerically.
I Covariance matrix of the parameters:

Var[λ, x0] =
(
D2 ln L̃

)−1
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Fitting an Exponential Curve

Condifence Intervals: Likelihood Ratio Test

I To estimate the CI for λ, We use the likelihood ratio test
I Construct a likelihood profile for λ

I λ is stepped to both directions of the point estimate λ̂
I At each step k = ±1,±2, · · ·

I Find Lk = max L(x0|λk)
I Compute the likelihood ratio

D(λk) = 2 ln
L0

Lk
= 2 ln L0 − 2 ln Lk

where L0 is the likelihood at the point estimate.

I Best practice for step size is to use the standard deviation from
the covariance matrix.

I Approx. Dk ∼ χ2
1, find the 95% CI for D(λ) : (D(λa),D(λb)).

I The 95% for λ is (λa, λb).
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Fitting an Exponential Curve

Negative Binomial Regression

I Poisson regression assumes E [xi ] = Var[xi ].
I Over-dispersion: Var[xi ] > E [xi ] because of

I observation errors
I non-exponentially distributed waiting times

I Solution: assume that xi is Negative-Binomial with
parameters r and 0 < p < 1

Prob(xi |r , p) =
Γ(xi + r)

xi !Γ(r)
pr (1− p)xi .

I Assume the same r for all xi .

E [Xi ] = r(1− p)/p ⇒ p = r/(r + E [xi ] =
r

r + x0eλti

I The parameters are λ, x0, and r .
I As r →∞, the Negative Binomial approaches Poisson.
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Fitting an Exponential Curve

Application to Simulated Epidemics

The trend of estimated exponential growth rate when using more
data points towards the peak of epidemic:

Red: theoretical rate; Black: estimation; blue: 95% CI;
grey: epidemic curveJunling MaDepartment of Mathematics and Statistics,University of Victoria
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Baseline

1918 Pandemic Influenza in Philadelphia

The trend of estimated exponential growth rate when using more
data points towards the peak of epidemic:

Black: estimation; blue: 95% CI; grey: epidemic curve
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Baseline

Baseline

I The early flat phase are non-flu deaths, such deaths are called
the baseline P&I deaths

I In a pandemic, most P&I deaths are flu deaths. We can thus
ignore the variation in the baseline

I So, we can use a new model for the mean P&I deaths

x(t) = b + x0e
λt

where b is the baseline.

I We use Poisson regression.
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Baseline

1918 Pandemic Influenza in Philadelphia with Baseline

The trend of estimated exponential growth rate when using more
data points towards the peak of epidemic:

Black: estimation; blue: 95% CI; grey: epidemic curve
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Decreasing Growth Rate

Taking Account of Decreasing Growth Rate

I Exponential growth rate decreases because of the depletion of
the susceptibles.

I Use the exponential model,
I Find the best fitting window by testing goodness of fit.

I Use more sophisticated phenomenological models
I Logistic model for cumulative cases
I Richards model for cumulative cases

I Use a mechanistic model, e.g., SIR, SEIR, ...
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Decreasing Growth Rate

Single Epidemic Phenomenological Models

I Logistic model:
I The cumulative cases C (t) initially grow exponentially, then

approach the final size
I The same shape as the logistic model.

C ′(t) = λC [1− C/K ]

This model introduces one more parameter K .
I But we should not directly fit the cumulative cases data

ck
∑k

i=0 xk to this model, because ck are not independent.
I Instead, we compute the interval cases x(t) = c(t + 1)− c(t),

and fit x(t) to the data xi .

I Richards model: cumulative cases has a mean

C ′(t) = λC [1− C/K ]α
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Decreasing Growth Rate

Fit Logistic Model to Simulated Epidemics

Allows the use of more data points:

Red: theoretical rate; black: estimation; blue: 95% confidence
interval; grey: epidemic curve
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Decreasing Growth Rate

Philadelphia 1918 Pandemic w/ Baseline + Logistic Model

The trend of estimated exponential growth rate when using more
data points towards the peak of epidemic:

Black: estimation; blue: 95% confidence interval; grey: epidemic
curveJunling MaDepartment of Mathematics and Statistics,University of Victoria
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Decreasing Growth Rate

Process Errors

Same disease parameters may produce different epidemic curves.
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Decreasing Growth Rate

Coverage Probability

I Coverage probability of a CI is the probability that CI contains
the true parameter value.

I A 95% CI should have 95% coverage probability.

I Because we ignored process errors, this method generally
produces narrower confidence intervals

I Simulations can verify that the coverage probability for
incidence cases is poor.

I Larger observation errors, for example, small reporting rates,
improve coverage.

Methods that can handle process errors include: one-step ahead,
particle filters, MCMC, ...
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Estimate R0: SIR Model

First, as an example, we look at an SIR model

S ′ = − β
N
SI , I ′ =

β

N
SI − γI .

I Recall that λ = β − γ, so β = λ+ γ

R0 =
β

γ
=
λ+ γ

γ
= 1 +

λ

γ
.

I What if λ is the exponential growth rate of the incidence
curve X (t) = βSI?
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Estimate R0: SEIR Model

S ′ = − β
N
SI , E ′ =

β

N
SI − σE . I ′ = σE − γI .

I Recall that

λ = ρ(J) =
1

2

(
λ+ γ +

√
(σ − γ)2 + 4βγ

)
I Isolate β,

β = σ +
λ

γ
(λ+ γ + σ)

R0 =
β

γ
= 1 + λ

(
λ

σγ
+

1

γ
+

1

σ

)
.
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Estimate R0 with a Model: in General

S ′ = f (S , I ; θ) ,

I ′ = g(S , I ; θ) .

where S ∈ Rm, I ∈ Rn, θ is the vector of parameters.
I Recall that the exponential growth rate is the largest

eigenvalue of
∂g

∂I
(S0, 0; θ) .

I This replationship usually gives us an estimate of the
transmission rate given all the other disease parameters.

I R0 can be computed using the infered transmission rate and
all other given parameter values.
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Estimate R0 using Generation Interval

See Wallinga and Lipsitch (Proc B 2007, 274:599604)
I Generation interval (serial interval): the waiting time from

being infected to secondary infections
I The generation interval distribution w(t) can be estimated

(e.g., from contact tracing) without a mechanistic model.

I Let n(t) is the transmission rate at age of infection τ .
I R0 =

∫∞
0

n(τ)dτ , and w(τ) = n(τ)/R0.
I The incidence curve x(t) = x(t) ∗ n(t)

I Assume x(t) = x(0)eλt ,

R0 =
1∫∞

0 e−λτw(τ)dτ
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The Influenza Generation Interval Distribution

Taken from N.M. Ferguson, et al., (Nature 2005, 437:209-214)
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The Basic Reproduction Number of 1918 Pandemic
Influenza in Philadelphia

Given that we have estimated the exponential growth rate to be

λ = 0.288, with 95% confidence interval: (0.286, 0.290)

and with the above generation interval distribution, we can
compute that

R0 = 2.16, with 95% confidence interval: (2.15, 2.17)

This is consistent with other estimations such as Mills et al.
(Nature 2004) and Goldstein et al. (PNAS 2009)
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Basic Reproduction Number Estimated by Goldstein et al
(2009)
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Some Considerations

I Deaths v.s. incidences

I Temporal aggregation (e.g., weekly incidences)

I Spatial aggregation (e.g., overall Canada v.s. city level curves)
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