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1. INTRODUCTION

Often, in modeling a random dynamical problem, a system of Itô
stochastic differential equations is developed and studied. There appear
to be three procedures for developing stochastic differential equation
(SDE) models for applications in population biology, physics, chemistry,
engineering, and mathematical finance. In the first modeling procedure, a
discrete stochastic model is developed by studying changes in the system
components over a small time interval (e.g., [1–12]). This approach is
a natural extension of the procedure used for many years in modeling
deterministic dynamical processes in physics and engineering, where
changes in the system are studied over a small time interval and a
differential equation is obtained as the time interval approaches zero.
Similarities between the forward Kolmogorov equations satisfied by
the probability distributions of discrete- and continuous-time stochastic
models let us infer that an Itô SDE model is close to the discrete
stochastic model. In this procedure, the number of Wiener processes in
the resulting SDE model never exceeds the number of components in
the system. In the second procedure, the dynamical system is carefully
studied to determine all of the different independent random changes
that occur in the system. Appropriate terms are determined for these
changes in developing a discrete-time stochastic model which is then
approximated by a system of stochastic differential equations (e.g.,
[13–17]). As the total number of different random changes may exceed
the number of components in the system, a stochastic differential
equation model is obtained where the number of Wiener processes
may exceed the number of equations. This procedure yields systems
of stochastic differential equations that are generally easy to solve
numerically. A third procedure is direct formulation of a system
of stochastic differential equations and is the most commonly used
procedure in constructing SDE models. For a given random dynamical
system, specific functional forms are assumed for the elements of the drift
vector and diffusion matrix. Frequently, for mathematical simplicity,
these elements are assumed to be linear functions of the component
processes (e.g., [18, 19]). These three procedures have been used in
modeling many dynamical processes that experience random influences.
In this investigation, only the first two procedures are discussed.

In the next section, two stochastic differential equation systems are
studied which are produced by the first and second modeling procedures.
The two systems of stochastic differential equations are structurally
different yet have identical probability distributions. In addition, by
identifying relations between Wiener trajectories, it is shown that a
sample path solution of one system is also a sample path solution
of the other system. As the stochastic models can be interchanged,
conceptual or computational advantages possessed by either model can
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be employed in any particular problem. In Section 3, it is shown how
the two stochastic models are derived from first principles, that is,
from the possible changes that may occur in the system. In Section 4,
three examples from chemistry, textile engineering, and epidemiology are
discussed, illustrating the derivations of the stochastic models and some
computational comparisons between them.

2. EQUIVALENT SDE SYSTEMS

Let

�f � �0� T�×�d → �d�

G � �0� T�×�d → �d×m�

and

B � �0� T�×�d → �d×d�

In addition, let �X�t� = �X1�t�� X2�t�� � � � � Xd�t��
T � �X∗�t� = �X∗

1�t��

X∗
2�t�� � � � � X

∗
d�t��

T � �W�t� = �W1�t��W2�t�� � � � �Wm�t��
T � and �W ∗�t� =

�W ∗
1 �t��W

∗
2 �t�� � � � �W

∗
d �t��

T � where Wi�t�, i = 1� � � � � m and W ∗
j �t�, j =

1� � � � � d are independent Wiener processes and m ≥ d. Considered in
this article are the two Itô SDE systems:

d �X�t� = �f�t� �X�t��dt +G�t� �X�t��d �W�t�� (2.1)

and

d �X∗�t� = �f�t� �X∗�t��dt + B�t� �X∗�t��d �W ∗�t�� (2.2)

Matrices G and B are related through the d × d matrix V , where
V�t� �z� = G�t� �z�GT�t� �z� and B�t� �z� = V 1/2�t� �z� for �z ∈ �d. It is assumed
that �f , G, and B satisfy certain continuity and boundedness conditions
[20, 21] so that (2.1) and (2.2) have pathwise unique solutions. Since �W
and �W ∗ are not defined on the same probability space, neither are X and
X∗. However, it is shown that solutions to (2.1) and (2.2) have the same
probability distribution. In addition, one can define a measure-preserving
map between the probability spaces in such a way that the corresponding
sample paths X and X∗ are identical.

Notice that the d × d symmetric positive semidefinite matrix V has
entries

vi�j�t� �X� =
m∑
l=1

gi�l�t� �X�gj�l�t� �X� (2.3)
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for i� j = 1� � � � � d and d × d symmetric positive semidefinite matrix B
has entries that satisfy

vi�j�t� �X� =
d∑

l=1

bi�l�t� �X�bj�l�t� �X� (2.4)

for i� j = 1� � � � � d. In component form, systems (2.1) and (2.2) can be
expressed as

Xi�t� = Xi�0�+
∫ t

0
fi�s� �X�s��ds +

∫ t

0

m∑
j=1

gi�j�s� �X�s��dWj�s� (2.5)

for i = 1� 2� � � � � d, where fi is the ith entry of �f and gi�j is the i� j entry
of the d ×m matrix G and

X∗
i �t� = X∗

i �0�+
∫ t

0
fi�s� �X∗�s��ds +

∫ t

0

d∑
j=1

bi�j�s� �X∗�s��dW ∗
j �s� (2.6)

for i = 1� � � � � d and bi�j is the i� j entry of the d × d matrix B.
It is now shown that solutions to (2.1) and (2.2) possess the same

probability distributions; they are equivalent in distribution. To see this,
consider the forward Kolmogorov equation or Fokker-Planck equation
for the probability density function p�t� �x� associated with the stochastic
differential system (2.1),

�p�t� �x�
�t

= 1
2

d∑
i=1

d∑
j=1

�2

�xi�xj

[
p�t� �x�

m∑
l=1

gi�l�t� �x�gj�l�t� �x�
]

−
d∑
i=1

��p�t� �x�fi�t� �x��
�xi

� (2.7)

In particular, if �z1� �z2 ∈ �d and �z1 ≤ �z2, then

P��z1 ≤ �X�t� ≤ �z2� =
∫ z2�d

z1�d

∫ z2�d−1

z1�d−1

· · ·
∫ z2�1

z1�1

p�t� �x�dx1 dx2� � � � � dxd�

As the elements of V satisfy

vi�j�t� �x� =
m∑
l=1

gi�l�t� �x�gj�l�t� �x� =
d∑

l=1

bi�l�t� �x�bj�l�t� �x��

systems (2.1) and (2.2) have the same forward Kolmogorov equation.
Hence, the probability density functions for �X�t� and �X∗�t� are identical.

In addition to solutions of (2.1) and (2.2) having the same
probability distribution, it is useful conceptually and for sample path
approximation to be aware that a sample path solution of one equation
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is also a sample path solution of the second equation defined on an
augmented probability space. It will be shown that stochastic differential
equations (2.1) and (2.2) possess the property that a sample path solution
of one equation is also a sample path solution of the second equation,
and the correspondence is measure preserving. More specifically, given
a Wiener trajectory �W�t� with sample path solution �X�t� to (2.1), there
exists a Wiener trajectory �W ∗�t� with the sample path solution �X∗�t� =
�X�t� to (2.2). Conversely, given a Wiener trajectory �W ∗�t� with sample
path solution �X∗�t� to (2.2), there exists a Wiener trajectory �W�t� with
the sample path solution �X�t� = �X∗�t� to (2.1).

Assume now that a Wiener trajectory �W�t� for 0 ≤ t ≤ T is given
and the sample path solution to (2.1) is �X�t�. It is now shown that
there exists a Wiener trajectory �W ∗�t� such that (2.2) has the same
sample path solution as (2.1), i.e., �X∗�t� = �X�t� for 0 ≤ t ≤ T . To
see this, an argument involving the singular value decomposition of
G�t� = G�t� �X�t�� is employed. Consider, therefore, the singular value
decomposition of G�t� = P�t�D�t�Q�t� for 0 ≤ t ≤ T , where P�t� and
Q�t� are orthogonal matrices of sizes d × d and m×m, respectively,
and D�t� is a d ×m matrix with r ≤ d positive diagonal entries. (It
is assumed that the rank of G�t� is r for 0 ≤ t ≤ T . This assumption
can be generalized so that the rank of G�t� is a piecewise constant
function of t on a partition of �0� T�.) It follows that V�t� = G�t�G�t�T =
P�t�D�t�DT�t�PT �t� = �B�t��2, where B�t� = P�t��D�t�DT�t��1/2PT�t�. The
vector �W ∗�t� of d independent Wiener processes is now defined as

�W ∗�t� =
∫ t

0
P�s���D�s��D�s��T �1/2�+D�s�Q�s�d �W�s�+

∫ t

0
P�s�d �W ∗∗�s�

for 0 ≤ t ≤ T , where �W ∗∗�s� is a vector of length d with the first r entries
equal to 0 and the next d − r entries independent Wiener processes,
and where ��D�t�DT�t��1/2�+ is the d × d pseudoinverse of �D�t�DT�t��1/2.
(If 	 is a d ×m matrix with nonzero entries 
i�i for i = 1� 2� � � � � r
with r ≤ d ≤ m, then 	+ is a m× d matrix with nonzero entries
1/
i�i for i = 1� 2� � � � � r. See, e.g., [22] or [23] for more information
about the singular value decomposition and pseudoinverses.) Notice that
E� �W ∗�t�� �W ∗�t��T � = tId, where Id is the d × d identity matrix verifying
that �W ∗�t� is a vector of d independent Wiener processes. The diffusion
term on the right side of (2.2) with �X∗�t� replaced by �X�t� satisfies

B�t� �X�t��d �W ∗�t�

= B�t�
(
P�t�

(
�D�t��D�t��T

)1/2)+
D�t�Q�t�d �W�t�+ P�t�d �W ∗∗�t�

)
= P�t��D�t�DT�t��1/2PT�t�

(
P�t�

(
�D�t��D�t��T

)1/2)+
D�t�Q�t�d �W�t�

+ P�t�d �W ∗∗�t��

= G�t� �X�t��d �W�t��
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Hence, d �X�t� = �f�t� �X�t��dt + B�t� �X�t��d �W ∗�t�; �X�t� is the sample path
solution of (2.2).

Conversely, assume a Wiener trajectory �W ∗�t� for 0 ≤ t ≤ T is given
and the sample path solution to (2.2) is �X∗�t�. It is now shown that
there exists a Wiener trajectory �W�t� such that (2.1) has the same sample
path solution as (2.2), that is, �X�t� = �X∗�t� for 0 ≤ t ≤ T . In this case,
the singular value decomposition of G has the form G�t� �X∗�t�� = G�t� =
P�t�D�t�Q�t� for 0 ≤ t ≤ T , where P�t� and Q�t� are orthogonal matrices
of sizes d × d and m×m, respectively, and D�t� is a d ×m matrix
with r ≤ d positive diagonal entries. The vector �W�t� of m independent
Wiener processes is now defined as

�W�t� =
∫ t

0
QT�s�D+�s��D�s��D�s��T �1/2PT�s�d �W ∗�s�+

∫ t

0
QT�s�d �W ∗∗∗�s�

for 0 ≤ t ≤ T where �W ∗∗∗�s� is a vector of length m with the first
r entries equal to 0 and the next m− r entries independent Wiener
processes, and where D+�t� is the m× d pseudoinverse of D�t�. Notice
that E� �W�t�� �W�t��T � = tIm, where Im is the m×m identity matrix. The
diffusion term in (2.1) with �X�t� replaced by �X∗�t� satisfies

G�t� �X∗�t��d �W�t�

= G�t�
(
QT�t�D+�t�

((
D�t�

(
D�t��T

)1/2)
PT�t�d �W ∗�t�+QT�t�d �W ∗∗∗�t�

)
= P�t�D�t�Q�t�

(
QT�t�D+�t�

((
D�t��D�t��T

)1/2)
PT�t�d �W ∗�t�

+QT�t�d �W ∗∗∗�t��

= B�t� �X∗�t��d �W ∗�t��

Thus, d �X∗�t� = �f�t� �X∗�t��dt +G�t� �X∗�t��d �W�t�; �X∗�t� is the sample
path solution of (2.1).

In effect, a sample path solution of system (2.1) with m ≥ d Wiener
processes is also a sample path solution of stochastic system (2.2) with
d Wiener processes, where the d × d matrix B satisfies B2 = GGT . That
the correspondence is measure-preserving follows from the two ways of
writing (2.7). In summary, the following result has been proved.

Theorem 2.1. Solutions to SDE systems (2.1) and (2.2) possess the same
probability distribution. In addition, a sample path solution of one equation
is a sample path solution of the second equation.

3. EQUIVALENT SDE MODELING PROCEDURES

In this section, it is shown how to formulate a stochastic differential
equation (SDE) model from a random dynamical system consisting
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of d components, where m ≥ d distinct independent random changes
may occur to the components of the system during a small interval of
time. Two modeling procedures are described for formulating an SDE
model as discussed in the previous sections. In the first procedure, the
m changes are collectively considered and means and covariances are
determined. The first approach produces an SDE system with d Wiener
processes. In the second procedure, each change is considered separately.
The second approach produces an SDE system with m Wiener processes.
In both procedures, the number of equations in the SDE model equals
the number of components, d. In addition, the two SDE models are
equivalent in that solutions to both models have the same probability
distribution and a sample path solution of one SDE model is also a
sample path solution of the other SDE model.

Consider a stochastic modeling problem that involves d component
processes S1� S2� � � � � Sd, �S = �S1� S2� � � � � Sd�

T . Suppose that there are a
total of m ≥ d possible changes that can occur to at least one of the
variables Si in a small time interval �t. Suppose, in addition, that the
probabilities of these changes can be defined as pj�t ≡ pj�t� �S��t for j =
1� 2� � � � � m, where the jth change alters the ith component by the amount
�j�i for i = 1� 2� � � � � d. Let

fi
(
t� �S�t�) = m∑

j=1

pj

(
t� �S�t�)�j�i (3.1)

for i = 1� 2� � � � � d. Notice that (3.1) can be used to define a deterministic
model consisting of a system of ordinary differential equations (ODEs):

d�S�t� = �f(t� �S�t�)dt� (3.2)

where �f = �f1� f2� � � � � fd�
T . For �t small, the ODE system (3.2) can be

approximated using Euler’s method by the formula

Sn+1�i = Sn�i + fi
(
tn� �Sn

)
�t� (3.3)

where tn = n�t and Sn�i ≈ Si�tn� for i = 1� � � � � d and n = 0� 1� � � � .
Assuming that �t is a small but fixed time interval, an accurate

discrete-time stochastic model can be formulated by considering the
random changes at each time step. Let �rj represent a random change of
the jth kind, where to order O

(
��t�2

)
, �rj is defined as follows:

�rj =
{
��j�1� �j�2� � � � � �j�d�

T with probability pj�t

�0� 0� � � � � 0�T with probability 1− pj�t�

For �t small, ��rj�i has approximate mean �j�ipj�t and variance �2j�ipj�t.
An accurate yet simple stochastic model for �Sn+1, given the vector
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�Sn, is
�Sn+1 = �Sn +

m∑
j=1

�rj (3.4)

for n = 0� 1� � � � . In component form, (3.4) becomes

Sn+1�i = Sn�i +
m∑
j=1

(�rj)i (3.5)

for i = 1� � � � � d and n = 0� 1� � � � �
In the first modeling procedure, it can be shown [1, 5] that

if the changes are small and �t is small, then the probability
distribution associated with the discrete-time stochastic system (3.4) can
be approximated by the solution to the forward Kolmogorov equation

�p�t� �x�
�t

= −
d∑
i=1

�
[
p
(
t� �x)fi�t� �x�]
�xi

+ 1
2

d∑
i=1

d∑
j=1

�2

�xi�xj

[
p�t� �x�vi�j�t� �x�

]
�

(3.6)

where vi�j is the �i� j�th entry of d × d matrix V = ∑m
j=1 pj

��j
(��j)T and

�f = ∑m
j=1 pj

��j . (See, e.g., [1, 4–6] for more information about this
procedure.) The probability distribution p�t� x1� x2� � � � � xd� that solves
(3.6) is identical to the distribution of solutions corresponding to the
SDE system {

d�S�t� = �f(t� �S�t�)dt + B
(
t� �S�t�)d �W ∗�t�

�S�0� = �S0�
(3.7)

where the d × d matrix B = V 1/2 and �W ∗�t� is a vector of d independent
Wiener processes. This first procedure gives the minimal number d of
Gaussian processes that can be used to describe this process.

The discrete stochastic model (3.4) is closely related to the SDE
model (3.7). Specifically, the probability distribution of solutions to (3.4)
is approximately the same as the probability distribution of solutions to
(3.7). In addition, it is useful to notice that the drift vector and diffusion
matrix, �f and B of the SDE model are equal to the expected change
divided by �t and the square root of the covariance matrix of the change
divided by �t, respectively. Specifically, letting ��j = ��j�1� �j�2� � � � � �j�n�

T ,
then the expected change in �S and the covariance in the change are

E
(
��S) = m∑

j=1

pj
��j�t = �f�t and E

(
��S(��S)T ) = m∑

j=1

pj
��j
(��j)T�t = V�t

(3.8)

where B = V 1/2.
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In the second modeling procedure, the m random changes in (3.4)
are approximated using m independent normal random variables, j ∼
N�0� 1�, j = 1� 2� � � � � m. The normal approximation may be justified
by arguments involving the Central Limit Theorem or by normal
approximations to Poisson random variables. Equation (3.4) for small
but fixed �t is therefore approximated by

Sn+1�i = Sn�i + fi
(
tn� �Sn

)
�t +

m∑
j=1

�j�ip
1/2
j ��t�1/2j (3.9)

for n = 0� 1� � � � , where fi is defined in (3.1). (See, e.g., [14–17] for
more information about this procedure.) Notice the similarity between
the deterministic equation (3.3) and the stochastic equation (3.9). The
discrete stochastic model (3.9) is an Euler-Maruyama approximation and
converges strongly (in the mean-square sense [20]) as �t → 0 to the SDE
system {

d�S�t� = �f(t� �S�t�)dt +G
(
t� �S�t�)d �W�t��

�S�0� = �S0�
(3.10)

where the i� j entry in the matrix G is gi�j = �j�ip
1/2
j for i = 1� 2� � � � � d,

j = 1� 2� � � � � m, and �W�t� is a vector of m independent Wiener processes.
Thus, the SDE system (3.10) is closely related to the discrete model (3.4).
Notice that the SDE system (3.10) has m Wiener processes and the d × d
matrix V = GGT has entries

�V�i�l =
(
GGT

)
i�l
=

M∑
j=1

gi�jgl�j =
M∑
j=1

pj�ji�jl = vi�l (3.11)

for i� l = 1� � � � � d. Furthermore, the entries of G are easy to write down
given the probabilities of the different changes based on the discrete-time
Markov chain (3.4).

Notice that the d ×m matrix G satisfies V = GGT and the SDE
system (3.10) can be replaced by the system (3.7) by the argument in
the previous section. Indeed, the forward Kolmogorov equations are
identical for both systems (3.7) and (3.10) and a sample path solution of
one system is a sample path solution of the other system. Finally, notice
that system (3.7) is generally more complicated than (3.10), as the d × d
matrix B is the square root of V even though G is d ×m. Consequently,
system (3.10) is generally easier to solve computationally. However, if
the number of changes, m, is much greater than the number of system
components, d, then equation (3.10) loses much of its computational
advantages.

It is interesting to note that there are other SDE systems equivalent
to (3.10) that can be generated from the probabilities of the changes.
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For example, if the diffusion matrix G is replaced by −G in (3.10), this
alternate system’s solutions will have the same probability distribution.
In general, there are other diffusion matrices H with the property HHT =
V = GGT that can replace G in (3.11). This is due to the fact that for a
multivariate Gaussian process there are many ways in which the process
can be written.

It is important to understand that stochastic differential equation
models (3.7) and (3.10) approximate the actual randomly varying system
as time and system variables are continuous in the SDE models whereas
discrete changes may be occurring at discrete times in the actual
randomly varying system. It is generally recommended when formulating
a mathematical model for a given process that the model be thoroughly
tested with Monte Carlo calculations or with experimental data to verify
the model’s accuracy.

It is useful to briefly discuss square roots of symmetric positive
semidefinite matrices because of their relevance to the stochastic system
(3.7). It is well-known that a symmetric positive semidefinite matrix has
a unique symmetric positive semidefinite square root [25, 26]. Clearly,
when V is put in the canonical form V = PTDP, where PTP = I and dii ≥
0 for i = 1� 2� � � � � n, then V 1/2 = PTD1/2P. However, for a large matrix, it
is computationally intensive to accurately compute all of the eigenvalues
and eigenvectors of V which are needed to determine P and D. For a 2×
2 matrix, the positive semidefinite square root can be readily calculated.
Indeed,

V 1/2 =
[
a b

b c

]1/2

= 1
d

[
a+ w b

b c + w

]
�

where w = √
ac − b2 and d = √

a+ c + 2w. For a general n× n

symmetric positive semidefinite matrix V with n ≥ 3, there is no explicit
formula for V 1/2 and, therefore, it must be calculated numerically.
However, many numerical procedures are available for computing V 1/2

(e.g., [24–26]).
In summary, two equivalent procedures were described for

constructing an Itô SDE model for a dynamical system consisting
of d components with m ≥ d different and independent random
changes. In the first procedure, means and covariances of the random
changes are calculated which then determines the SDE model. In
the second procedure, each independent random change is explicitly
included. Several examples arising in chemistry, textile engineering, and
epidemiology are described in the next section, where the two modeling
procedures are compared.
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4. EXAMPLES AND COMPUTATIONAL COMPARISONS

4.1. Chemical Reactions

In this section, chemical reactions between molecules are modeled in
a stochastic manner (similar to the investigations described in [13–15]).
It is shown how an SDE model can be developed using the two
modeling procedures. It is assumed that a fixed volume contains a
uniform mixture of d different chemical species that interact through m
different chemical reactions. The reaction rates are either proportional
to the rates that the molecules collide or, if the reaction is spontaneous,
the reaction rate is just proportional to the number of molecules of the
particular chemical species. Given the initial numbers of molecules of
the d different chemical species, the objective is to find the molecular
population levels at a later time.

To illustrate the modeling procedure for chemical reactions, it is
useful to consider a specific problem. Therefore, suppose that there
are three chemical species S1� S2� and S3 interacting through molecular
collisions or spontaneously in the four ways described in Table 1. In
Table 1, �1� �2� �3� and �4 are reaction rate constants and X1� X2� and
X3 are the number of molecules of species S1� S2� and S3, respectively.
The second reaction is assumed to be spontaneous and so the probability
of a reaction only depends on the number of molecules, X3. For the
first reaction, the rate depends on a collision occurring between species
S1 and S2 and is therefore proportional to the product of X1 and X2.
The third reaction depends on a collision involving two molecules of
S2 and one molecule of S3. As there are X2�X2 − 1�/2 ways to select
two molecules from a total of X2 molecules, the rate of this reaction
depends approximately on the product of X2

2/2 with X3. The fourth
reaction depends on two molecules of S1 interacting and is approximately
proportional to X2

1/2. For a thorough discussion of reaction rate
dynamics, see [13–15].

To form the SDE model using the first procedure discussed in the
previous section, E

(
� �X) and E

((
� �X)(� �X)T ) need to be computed. To

find these expectations, the possible changes for the reactions given in

Table 1. Probabilities for reactions among
three chemical species

Reaction Probability

S1 + S2 → S3 p1 = �1X1X2�t
S3 → S1 + S2 p2 = �2X3�t
2S2 + S3 → 2S1 p3 = �3X

2
2X3�t/2

2S1 → 2S2 + S3 p4 = �4X
2
1�t/2
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Table 1 are listed in Table 2 along with their associated probabilities.
Then

E
(
� �X) = 4∑

i=1

pi

(
� �X)

i

=



−�1X1X2 + �2X3 + �3X
2
2X3 − �4X

2
1

−�1X1X2 + �2X3 − �3X
2
2X3 + �4X

2
1

�1X1X2 − �2X3 − �3X
2
2X3/2+ �4X

2
1/2


�t

= �f�X1� X2� X3��t

and

E
((
� �X)(� �X)T ) = 4∑

i=1

pi

(
� �X)

i

(
� �X)T

i

=



a+ 4b a− 4b −a− 2b

a− 4b a+ 4b −a+ 2b

−a− 2b −a+ 2b a+ b


�t

= V�X1� X2� X3��t�

where a = �1X1X2 + �2X3 and b = �3X
2
2X3/2+ �4X

2
1/2� It follows that

the SDE model for this example problem has the form{
d �X�t� = �f�X1� X2� X3�dt + �V�X1� X2� X3��

1/2 d �W ∗�t�

�X�0� = �X1�0�� X2�0�� X3�0��
T �

(4.1)

where �W ∗�t� = �W ∗
1 �t��W

∗
2 �t��W

∗
3 �t��

T �
Using the second modeling procedure for this example gives the SDE

model: {
d �X�t� = �f�X1� X2� X3�dt +G�X1� X2� X3�d �W�t�

�X�0� = �X1�0�� X2�0�� X3�0��
T �

(4.2)

Table 2. Possible molecular population changes in a
small time period �t

Possible change Probability

�� �X�1 = �−1�−1�+1�T p1 = �1X1X2�t

�� �X�2 = �+1�+1�−1�T p2 = �2X3�t

�� �X�3 = �+2�−2�−1�T p3 = �3X
2
2X3�t/2

�� �X�4 = �−2�+2�+1�T p4 = �4X
2
1�t/2
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Table 3. Calculated mean molecular levels and standard
deviations at time t = 1�0 using a Monte Carlo procedure

Chemical species E�Xi� 
�Xi�

S1 79.21 7.28
S2 37.61 5.84
S3 131.19 5.54

where �W�t� = �W1�t��W2�t��W3�t��W4�t��
T is a vector of four

independent Wiener processes and the 3× 4 matrix G has the form

G =


−��1X1X2�

1/2 ��2X3�
1/2 2��3X

2
2X3/2�

1/2 −2��4X
2
1/2�

1/2

−��1X1X2�
1/2 ��2X3�

1/2 −2��3X
2
2X3/2�

1/2 2��4X
2
1/2�

1/2

��1X1X2�
1/2 −��2X3�

1/2 −��3X
2
2X3/2�

1/2 ��4X
2
1/2�

1/2


�

Stochastic differential equation models of the form (4.2) are referred to
as chemical Langevin systems [15].

To verify the accuracy and illustrate the close agreement between
the SDE models (4.1) and (4.2), calculational results using the models
were compared with those obtained using a Monte Carlo procedure.
In the Monte Carlo procedure, the molecular process was checked
at each small interval of time to see if any reaction occurred. The
calculational results for the Monte Carlo procedure are summarized in
Table 3 for 5,000 sample paths. In these calculations, the values of
the reaction rate constants were taken as �1 = 0�02� �2 = 0�4� �3 = 0�001�
and �4 = 0�03. The initial numbers of molecules were assumed to be
X1�0� = X2�0� = X3�0� = 100 and the final time was taken as t = 1�0.
Next, the SDE models (4.1) and (4.2) were numerically solved using
the Euler-Maruyama method with 5,000 sample paths. The results using
these two SDE models are compared in Table 4, where a sample path
using (4.1) is plotted in Figure 1 and a sample path using model (4.2)

Table 4. Calculated mean molecular levels and standard
deviations at time t = 1�0 using SDE models (4.1) and (4.2)

Model Chemical species E�Xi� 
�Xi�

S1 79�31 7.62
(4.1) S2 37�44 6.14

S3 131�17 6.43
S1 79�39 7.69

(4.2) S2 37�47 6.13
S3 131�09 5.85
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Figure 1. Molecular population levels for one sample path of SDE (4.1).

is plotted in Figure 2. Notice the good agreement between the two SDE
models as well as the good agreement between the SDE models and the
Monte Carlo approach.

4.2. Cotton Fiber Breakage

In cotton thread manufacture, the cotton fiber length distribution
determines many of the characteristics of the thread [12, 27, 28]. Fiber
length is a good indicator of spinning efficiency, yarn strength, and
yarn uniformity. Fiber length distribution is affected by breakage during
processing. In cotton processing, fiber breakage occurs in ginning and
carding. Breakage of the fibers in cotton processing generally results in
lower quality yarn.

Figure 2. Molecular population levels for one sample path of SDE (4.2).
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The development of an SDE model for fiber-length distributions
provides insight into the fiber breakage phenomenon and the origin
of different fiber-length distributions. By comparing calculations of the
stochastic model with fiber-length data, fiber breakage parameters can be
estimated and the distribution characteristics can be investigated.

In the stochastic model, the fibers are grouped by length. In this
manner, the cotton fiber distribution can be considered as a population
distribution. The SDE model is derived by carefully considering the
population process and breakage possibilities over a short time interval
using the stochastic modeling techniques described previously. First,
a discrete stochastic model is derived where the breakage phenomenon
is carefully studied for a short time interval. A system of stochastic
differential equations is then identified whose probability distribution
approximates that of the discrete-time stochastic model.

In developing an SDE model, d populations, �Nk�t��
d
k=1, of fibers

having different lengths are considered as functions of time t. Some
terminology and notation associated with the stochastic model are
required and introduced next.

L = fiber length, where 0 ≤ L ≤ Lmax.

Lk = kh for k = 0� 1� � � � � d, where h = Lmax/m.

Nk�t� = number of fibers of length Lk for k = 1� 2� � � � � d.

qk dt = fraction of fibers of length Lk broken in time dt.

Sk�l = fraction of fragments of length Ll formed from breakage of
fibers of length Lk.

pk�l�t�dt = Nk�t�Sk�lqkdt = probability of a fragment of length Ll

being formed from breakage of a fiber of length Lk in time t to t + dt.

From the preceding definitions, it follows that
∑k−1

l=1 Sk�l = 1, Sk�k−l = Sk�l,
and the number of independent random changes in any interval of time
is d�d − 1�/2.

To develop the SDE system using the first modeling procedure,
the changes in the fiber populations are carefully studied and tabulated
for a small time interval dt. Then the mean change E

(
� �N�t�

)
and the

covariance in the change E
((
� �N�t�

)(
� �N�t�

)T )
for the small time interval

are calculated. For example, consider the special case where d = 8, that
is, there are 8 groups of fibers. Consider a fiber in the seventh group
breaking into two fibers, one in group 5 and one in group 2. The change
produced is

(
� �N )7�5 = �0� 1� 0� 0� 1� 0�−1� 0�T (4.3)
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with probability p7�5�t�dt = N7�t�S7�5q7dt. The value of the expected
change E�� �N�t�� for the small time interval is calculated by summing the
products of the changes with the respective probabilities. In general, for
any value of d, it can be shown that the lth component of E�� �N�t�� has
the form

E
(
� �N�t�

)
l
= 2

d∑
k=l+1

pk�l�t�dt −
l−1∑
k=1

pl�k�t�dt�

In addition, the covariance matrix has the form

E
((
� �N�t�

)(
� �N�t�

)T ) = d∑
k=1

k−1∑
l=1

Ck�lpk�l�t�dt�

where Ck�l = �� �N�k�l��� �N�k�l�T and �� �N�k�l is the change produced for
a fiber of group k breaking into a fiber of group l and group k− l.
For example, for the special case where d = 8 and a fiber in the seventh
group breaks into two fibers, one in group 5 and one in group 2, then
the corresponding term in the covariance matrix is:

C7�5 = (
� �N )7�5((

� �N )7�5)T =




0 0 0 0 0 0 0 0
0 1 0 0 1 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 1 0 −1 0
0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 1 0
0 0 0 0 0 0 0 0



�

Now, the expected change and the covariance matrix are defined by

E
(
� �N ) = �f(t� �N�t�

)
dt and E

(
� �N� �NT

) = V
(
t� �N�t�

)
dt�

Then, as explained earlier, the probability distribution p�t� �N� of the
fiber-length populations with time t can be approximated by the solution
to the forward Kolmogorov equation,

�p�t� �N�

�t
= −

d∑
i=1

�

�Ni

�fi�t� �N�p�t� �N��

+ 1
2

d∑
i=1

d∑
j=1

�2

�Ni�Nj

[ d∑
k=1

vi�k�t� �N�vj�k�t� �N�p�t� �N�

]
�

The SDE system corresponding to this forward Kolmogorov equation
has the following form:

d �N�t� = �f(t� �N�t�
)
dt + (

V
(
t� �N�t�

))1/2
d �W ∗�t�� (4.4)
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where �N�t� = �N1�t�� N2�t�� � � � � Nd�t��
T are the fiber populations in

each length group and �W ∗�t� = �W ∗
1 �t�� � � � �W

∗
d �t��

T is an d-dimensional
Wiener process. Equation (4.4) is an SDE model for the fiber-length
populations as a function of time t.

In the second modeling procedure, the independent random changes
are explicitly modeled. Let �� �N�k�l be the change to the vector �N�t� (see
Equation (4.3)), with probability pk�l�t�dt due to a breakage of a fiber in
group k to produce one fiber each in groups l and k− l. Then the SDE
model using the second approach can be written in the form

d �N�t� = �f(t� �N�t�
)
dt +

d∑
k=1

k−1∑
l=1

(
� �N )k�l

�pk�l�t��
1/2 dWk�l�t�� (4.5)

where pk�l�t� = Nk�t�Sk�lqk, Wk�l�t� for l = 1� 2� � � � � k− 1 and k = 1�
2� � � � � d are m independent Wiener processes, and the ith element of
vector (� �N�k�l is

(
�� �N�k�l

)
i
=



−1� if i = k

1� if i = l or i = k− l

0� otherwise�

Notice, for SDE model (4.5), that m = d�d − 1�/2 Wiener processes are
required whereas SDE model (4.4) only requires d Wiener processes.

To compare the stochastic models (4.4) and (4.5), Monte Carlo
simulations are performed. In the Monte Carlo calculations, at each
small time step, each fiber is checked for breakage. If breakage occurs,
the fiber is randomly divided. Considered in these calculations is the
situation where breakage occurs randomly and the probability for
breakage is proportional to the length of the fiber. Under this breakage
assumption,

qkSk�j dt = �

(
h

Lmax

)
dt�

where � is a constant which determines the rate of fiber breakage fraction
of fibers of length k broken in time dt and

Sk�j =
h

Lk−1

= 1
k− 1

�

where Sk�j fraction of fragments of length Lj formed from breakage
of fiber of length Lk. The parameter � is set equal to unity in the
calculations and it is assumed that there are initially 100 fibers each
one inch in length. Two hundred sample paths were computed for each
SDE model (4.4) and (4.5). The calculational results are compared in
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Table 5. Monte Carlo and SDE calculational results on fiber lengths at
time t = 1�0

Avg. number Standard dev. Average fiber Standard dev.
of fibers in no. of fibers length in fiber length

200.5 (MC) 10.57 (MC) 0.5001 (MC) 0.0263 (MC)
197.8 (SDE (4.4)) 11.47 (SDE (4.4)) 0.5068 (SDE (4.4)) 0.0265 (SDE (4.4))
196.3 (SDE (4.5)) 10.25 (SDE (4.5)) 0.5109 (SDE (4.5)) 0.0271 (SDE (4.5))

Table 5. The results indicate very good agreement between the two
different modeling procedures.

Additional computations produce fiber-length distributions having
a bimodal structure. Bimodal distributions are commonly seen in fiber-
length data. Results of an example calculation are illustrated in Figure 3.
For this calculation, it is assumed that the fibers are distributed initially
as Nk�0� = 2�k− 20� for k = 20� 21� � � � � 35 and Nk�0� = 2�50− k� for
k = 36� 37� � � � � 50, where Nk�0� is the initial number of fibers of length
Lk = 0�02k.

4.3. Epidemic Model with Vaccination

In the last example, the impact of vaccination on a population is
studied. Individuals within the population are classified according to
the following four disease stages: susceptible, infective, recovered (and
immune), and vaccinated, S, I , R, and V , respectively. The vaccine is
assumed to be imperfect; vaccinated individuals may still transmit the

Figure 3. Average fiber length distribution after random breakage for time
t = 1�0 (SDE model (4.4)).
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disease. The deterministic model was originally formulated by Arino
et al. [29]. A stochastic formulation of this model using the procedure
that leads to (3.7) was formulated by Allen and van den Driessche [30].
The alternate but equivalent stochastic formulation that leads to (3.10) is
derived here in addition to a slightly simpler but equivalent SDE model.

For large populations, the SDE models can be derived directly from
the deterministic epidemic model because the changes that occur can
be clearly identified in the deterministic model. The ODE model with
vaccination is given by the following system:

dS

dt
= d�N − S�− � SI

N
− �S + �V + �R

dI

dt
= � SI

N
+ 
�VI

N
− �d + ��I

dR

dt
= �I − �d + ��R

dV

dt
= �S − �d + ��V − 
�VI

N
�

(4.6)

The total population size is constant, N = S�t�+ I�t�+ R�t�+ V�t�.
The per capita birth rate equals the death rate, d. Parameters �, �,
and � are the transmission rate, recovery rate, and vaccination rate,
respectively. The vaccine does not provide lifelong protection and wanes
at a rate �. In addition, natural immunity is not lifelong; loss of
natural immunity occurs at a rate �� The parameter 
 is the vaccine
efficacy, 0 ≤ 
 ≤ 1. If 
 = 0, then the vaccine is perfect but if 
 > 0,
the vaccine is imperfect; vaccinated individuals transmit the disease. This
model has some interesting properties. In [29], it was shown for certain
parameter regions that both the disease-free equilibrium and an endemic
equilibrium are stable; the system exhibits what is known as bistability.
In practical terms, the disease is difficult to control with vaccination
when parameter values lie in the region of bistability.

Because the population size is constant, system (4.6) can be reduced
to three differential equations. The three variables I�t�, R�t�, and V�t�
are sufficient to model the disease dynamics; S�t� = N − I�t�− R�t�−
V�t�. Let Xi, i = 1� 2� 3 denote the random variables for I , R, and V ,
respectively, and let X0 denote N − X1 − X2 − X3. There are seven
possible changes in the vector �X = �X1� X2� X3�

T for a small time interval
�t, assuming at most one change can occur. These changes are given in
Table 6.

Applying the first modeling procedure yields the following system
for the epidemic model:{

d �X�t� = �f(t� �X�t�)dt + B
(
t� �X�t�)d �W ∗�t�

�X�0� = �X1�0�� X2�0�� X3�0��
T �

(4.7)
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Table 6. Possible changes in the process for the
epidemic model when �t is small

Possible change Probability

�� �X�1 = �1� 0� 0�T p1 = ��X0X1/N��t

�� �X�2 = �−1� 0� 0�T p2 = dX1�t

�� �X�3 = �−1� 1� 0�T p3 = �X1�t

�� �X�4 = �0�−1� 0�T p4 = �d + ��X2�t

�� �X�5 = �1� 0�−1�T p5 = �
�X1X3/N��t

�� �X�6 = �0� 0�−1�T p6 = �d + ��X3�t

�� �X�7 = �0� 0� 1�T p7 = �X0�t

where �W ∗�t� = �W ∗
1 �t��W

∗
2 �t��W

∗
3 �t��

T is a vector of three independent
Wiener processes. The drift vector �f has the form

�f�t� �X�t�� =



�X0X1

N
+ 
�X1X3

N
− �d + ��X1

�X1 − �d + ��X2

�X0 − �d + ��X3 − 
�X1X3
N


 (4.8)

and the 3× 3 matrix B = V 1/2. Matrix V is



�X0X1

N
+ 
�X1X3

N
+ �d + ��X1 −�X1 −
�X1X3

N

−�X1 �X1 + �d + ��X2 0

−
�X1X3
N

0 �X0 + �d + ��X3 + 
�X1X3
N




This procedure was applied in [30].
Applying the second modeling procedure yields the following

stochastic system for the epidemic model:

{
d �X�t� = �f�t� �X�t��dt +G�t� �X�t��d �W�t�

�X�0� = �X1�0�� X2�0�� X3�0��
T �

(4.9)

where �W�t� = �W1�t��W2�t�� � � � �W7�t��
T is a vector of 7 independent

Wiener process, the drift vector �f is given in (4.8), and the diffusion
matrix G is a 3× 7 matrix of the form

(
�

X0X1
N

)1/2
�dX1�

1/2 −��X1�
1/2

(

�

X1X3
N

)1/2
0 0 0

0 0 ��X1�
1/2 0 ��d + ��X2�

1/2 0 0

0 0 0 −(

�

X1X3
N

)1/2
0 ��d + ��X3�

1/2 ��X0�
1/2




so that GGT = V�
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A simpler SDE model, equivalent to the two preceding models (4.7)
and (4.9), is given by the system

{
d �X�t� = �f�t� �X�t��dt +H�t� �X�t��d �W ′�t�

�X�0� = �X1�0�� X2�0�� X3�0��
T �

(4.10)

where �W ′�t� = �W ′
1�t��W

′
2�t��W

′
3�t��W

′
4�t��W

′
5�t��

T is a vector of
5 independent Wiener processes, �f is given in (4.8), and H is the 3× 5
matrix

(
�

X0X1
N

+ dX1

)1/2 −��X1�
1/2

(

�

X1X3
N

)1/2
0 0

0 ��X1�
1/2 0 ��d + ��X2�

1/2 0

0 0 −(

�

X1X3
N

)1/2
0 ��d + ��X3 + �X0�

1/2


 �

Note that HHT = V . A similar set of Itô SDEs was formulated by
Greenwood et al. [16] for an SIR epidemic model.

Numerical simulations of the three SDE models, (4.7), (4.9),
and (4.10), for the epidemic model with vaccination are compared. The
mean and standard deviation for each random variable and for each
model are computed at t = 5 years using the Euler-Maruyama method
with 10,000 sample paths. See Table 7. The parameter values are chosen
in the region of bistability but the initial conditions are such that almost
all sample paths are close to the stable endemic equilibrium [29, 30].
In the deterministic model, the stable endemic equilibrium is (I� R� V� =
�193�25� 284�95� 447�41�. The means and standard deviations illustrate
the close agreement among the three SDE models.

The probability distributions associated with each of the random
variables are close to normal at t = 5. Graphed in Figure 4 are the

Table 7. Mean and standard deviation for the three SDE epidemic models
at t = 5 years. The units of the parameter values are per year: � = 365/21,
d = 1/75, � = 365/32, � = 365/20, and � = 1/5 [29, 30]. Vaccine efficacy is

 = 0�10. Initial conditions are X1�0� = 5, X2�0� = 0 = X3�0�

Model Variables E�Xi� 
�Xi�

X1 188.67 24.03
(4.7) X2 278.38 28.77

X3 458.96 46.14
X1 188.53 24.38

(4.9) X2 278.32 29.38
X3 459.66 47.29
X1 189.24 23.51

(4.10) X2 279.14 27.56
X3 457.72 43.95



Equivalent SDE Models 295

Figure 4. Probability histograms at time t = 5 for (a) X1 (infectives),
(b) X2 (recovered and immune), and (c) X3 (vaccinated).

probability histograms for the three random variables based on 10,000
sample paths using SDE model (4.10).

5. SUMMARY AND CONCLUSIONS

Two procedures are described for formulating a stochastic differential
equation model for a random dynamical system consisting of
d components, where m ≥ d distinct independent random changes may
occur to the components during a small interval of time. The first
procedure produces a diffusion matrix B of dimension d × d and the
second procedure produces a diffusion matrix G of dimension d ×m.
The two distinct systems of Itô stochastic differential equations are
shown to be equivalent in the sense that solutions of the systems possess
the same probability distribution and a sample path solution of one
system is a sample path solution of the other system.

Each modeling procedure possesses certain conceptual and
computational advantages that can be interchanged in any particular
problem. The first procedure has certain conceptual advantages as the
procedure is a natural extension of the modeling procedure applied for
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many years in modeling deterministic dynamical processes in physics and
engineering, where changes in the deterministic system are studied over a
small interval of time and a differential equation is obtained as the time
increment approaches zero. Also, for the first procedure, similarities are
straightforward to obtain between the forward Kolmogorov differential
equations satisfied by the probability distributions of the discrete-
and continuous-time stochastic models and these similarities alow one
to infer an Itô SDE model from the discrete stochastic model [1, 5].
However, because the system produced in the first procedure requires
computation of a square root of a matrix, whereas the system produced
in the second procedure does not, the second system with the larger
diffusion matrix may be a computationally simpler system provided that
m is not excessively large compared with d.

Finally, it is shown how both systems are easy to formulate
and provide alternate ways to develop stochastic differential equation
models based on underlying discrete-time stochastic processes. Stochastic
differential equation models are formulated and computationally
compared for example problems arising in chemistry, textile engineering,
and epidemiology. The computational results illustrate the equivalence
of the probability distributions for the two SDE models.
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