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Abstract

Many experiments designed to precisely determine the half-life of a radionu-
cleide employ a long lived reference source to help determine the impact on the
data of any systematic variation in the detector and associated electronics. The
half-life of the radionucleide of interest is determined from the ratio of its decay
rate data to the decay rate data from the reference source.

This correction procedure assumes that any underlying systematic affects the
data and reference measurements in exactly the same way. In this paper we show
that when some systematic effects affect the two differently, the ratio procedure
can leave artifacts in the corrected data that can compromise an unbiased and
precise assessment of the radionucleide half-life. We describe two methods that
can help overcome this problem. We also describe several statistical tests that
help determine which effects may underlie systematic variations in the data.

We discuss an illustrative example based on previously published 32Si and
36Cl data recorded by an experiment at Brookhaven National Laboratory. We
correct the data for systematic variation related to climate variation and esti-
mate the 32Si half-life to be T1/2 = 171.8 ± 1.8. The reduction in uncertainty
in the 32Si half-life, relative to the previous estimate based upon this data, is
equivalent to that which would be achieved through increasing the size of the
data set by almost 3.5 times.

1. Introduction

Precision measurements of radionucleide half-lives are crucial to many differ-
ent endeavours including, but not limited to, medical physics, dating of artifacts,
cosmology, and our understanding of fundamental physics.

Precise and unbiased determination of the half-life of a radionucleide requires
careful control of systematic effects both in the design of the detector apparatus
and in the experimental method. One common method to control for systematic
effects is to compare the decay rate observations of a radionucleide of interest to
concurrent decay rate observations of a second “reference” radionucleide with a
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half-life that is precisely known from previous experiments (see, for instance, [1–
7]). By “concurrent”, we mean here either truly concurrent, or approximately
concurrent within a short time scale relative to the time scale of systematic
variations in the data.

To see how this works in practice, let us refer to the number of decays per unit
time of the source of interest and the reference source as A and B, respectively:

A = λAN
A
0 e−λAt (1)

B = λBN
B
0 e−λBt,

where λA and λB are the decay rates of the two sources (and λB is assumed to
be known with precision).

In the absence of systematic effects, we would obviously not need a reference
source, and could use Equation 1 directly to fit the data for the source of interest
to determine λA. In the presence of systematic effects common to both sources,
f , we can fit the time series of A/B data for λA:

A

B
=

λAN
A
0 e−λAt(1 + f)

λBNA
0 e−λBt(1 + f)

=
λAN

A
0 e−(λA−λB)t

λBNB
0

. (2)

However, we describe in the following sections how use of just one reference
source may not be sufficient to cancel systematic effects that differ somewhat
between sources.1 This leads to extra uncertainty and even potential bias in
the estimate of λA. We discuss two methods that can be used to control for
systematics that differ between sources. We also describe several statistical tests
that can provide a powerful means to help determine if a suspected source of
systematic variation truly is consistent with having a causative effect on the
variations in the data.

We apply these methods in a case study of previously published 32Si and
36Cl data recorded by an experiment at Brookhaven National Laboratory.

2. Control of systematic effects

As just discussed, a reference source can be used to correct decay rate data for
systematic effects that are common to both the reference and the radionucleide
of interest. However, things become more complicated if there are systematic
effects that are not common to both sources. In this case, we have

A

B
=

λAN
A
0 e−λAt(1 + f + gA)

λBNB
0 e−λBt(1 + f + gB)

, (3)

1An example of such an effect would perhaps be differing attenuation of the decay prod-
ucts of the sources in the air or detector material due to the differing energy spectra of the
decay products. The time variations of such effects could conceivably be related to temporal
variations in the environmental conditions in the vicinity of the detector.
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where f is the common systematic effect, and gA and gB are the systematic
effects that differ between sources. If we assume that f , gA, and gB are all
much less than 1, we obtain

A

B
∼

λAN
A
0 e−λAt(1 + f + gA)(1− f − gB)

λBNB
0 e−λBt

, (4)

which yields, when we expand and assume that second order terms can be
neglected,

A

B
∼

λAN
A
0 e−λAt(1 + gA − gB)

λBNB
0 e−λBt

. (5)

We now see that if gA 6= gB , the ratio A/B will have extra variation due to
systematic effects that have not been cancelled out. This extra variation, if it
remains uncorrected, will not only inflate the uncertainty on the estimate of λA,
but also potentially bias the estimate of λA if ∆g = gA − gB has trend in time.

2.1. Parameterization when cause of variation is unknown

When significant differing variation is observed between the decay rate ob-
servations of an interest and reference source, but the cause of the variation
is unknown, the use of two reference sources can be employed in a subsequent
experiment to control for the variation.

We begin with the assumption that the sources of systematic variation gA
and gB have the same underlying functional form, except scaled by a constant
such that gB = bgA (here we assume that b 6= 0). We obtain

A

B
=

λAN
A
0 e−λAt (1 + gA(1− b))

λBNB
0 e−λBt

. (6)

A second reference source with well-known decay rate λC can help us to param-
eterize the temporal variation of gA, via

C

B
∼

λCN
C
0 e−λCt(1 + cgA − bgA)

λBNB
0 e−λBt

. (7)

Solving for gA yields

gA =
1− C

B
λBNB

0
e−λBt

λCNC

0
e−λCt

b− c
. (8)

This now becomes a parameterization of the functional form of gA, down to two
unknown constants, NB

0 /NC
0 and c− b.

Substituting this formulation for gA into Equation 6 now allows the use
of decay rate data from the two reference sources, B and C, to control for
systematic effects. The decay rate, λA, can be obtained from a fit to Equation 6
that also estimates the two extra constants NB

0 /NC
0 and d = (1− b)/(b− c).
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2.2. Parameterization when the cause of variation is known or suspected

If some variable is suspected to systematically affect the decay rate obser-
vations from the two sources differently, and we have measurements of that
variable concurrent to the decay rate data, it is a simple matter to parameter-
ize ∆g = gA − gB in terms of that variable and include the parameterization in
Equation 5. Potential causes of variation could include environmental variables,
like temperature or humidity [2, 17].2

This is of course similar to any data correction procedure, but here we de-
scribe how to test a suspected cause of systematic variation to determine if it
is truly consistent with potentially being causative. However, before we move
on, it should be noted that even if a variable suspected to have causative effect
passes the statistical tests outlined here, causation still has not been proven.
However, if the statistical tests are not passed, the variable can be ruled out as
having significant causative effect on variations in the data.

For instance, let’s assume that ∆g is suspected to have an approximately
linear relationship with the air pressure, P , and we have a time series of mea-
surements of P concurrent with the decay rate data measurements (ie; we hy-
pothesize ∆g = q+ sP , where q and s are parameters to be determined). With
this parameterization we would thus regress the data on the RHS of Equation 5
to estimate λA, N

A
0 /NB

0 , and q and s to determine if s is significantly different
from zero. A useful cross check of true dependence of ∆g on P is to then take
the first time derivative of Equation 5 and fit it to the first derivative of the
time series; the fit should return a value of s that is statistically consistent with
the first estimate.3 This first derivative method is also useful as a low frequency
noise filter when performing spectral analyses of the time series, and has long
been used for this purpose[12, 13].

Beyond linear regression analyses, there are statistical methods, such as
correlation analysis, that can instead be used to determine whether or not a
variable is consistent with potentially having a causative effect on the data. It
has to be kept in mind that correlation between two quantities X and Y is
necessary to prove causation, but correlation itself does not prove causation if
the existence of a third and countervailing causative variable has not been ruled

2In recent times environmental data are readily available online for any urban center in
the world close to an airport[9, 10]. Even though the data are for exterior climate conditions,
it should be noted that air pressure is the same indoors and out, unless a building is pressure
controlled. Specific humidity (the mass of water contained in a kg of dry air, and a function of
air pressure, temperature, and relative humidity) is also the same indoors and out unless the
building is humidified or de-humidified (which can occur if an air-conditioning unit operates
in the summer). In addition, the average indoor air temperature is correlated to outdoor air
temperature due to temperature threshold behavior in the duty cycle of the building HVAC
thermostats [11].

3Note that if the time between subsequent measurements of A, Ai−1 and Ai, is relatively
small, the first derivative of the time series is approximated by

A′

i
= (Ai −Ai−1)/(ti − ti−1). (9)
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out. One way to examine the possible countervailing effect of third variable, Z,
is to calculate what are known as partial correlation coefficients. The partial
correlation coefficient of X and Y , controlling for Z is

rXY |Z =
rXY − rXZrY Z

√

1− r2XZ

√

1− r2Y Z

, (10)

where rXY , rXZ , and rY Z are the correlations between X and Y , X and Z,
and Y and Z, respectively. If rXY |Z is consistent with zero then X and Y
are consistent with being independent [14]. Partial correlation analyses are
equivalent to regression analyses where the variable X is regressed on Y and
Z. We include a discussion of partial correlation methods here because of their
applicability to analyses that use correlation methods alone to conclude evidence
of causality (e.g. reference [19]).

Time series with seasonal variation can present particular analysis challenges
because they can appear to be significantly correlated even when the underlying
cause of seasonality in the two series is completely unrelated. For example,
assume we have two unrelated time series

X = µX(1 + ǫX cos 2πω(t− φX)), and

Y = µY (1 + ǫY cos 2πω(t− φY )) (11)

with same period, 1/ω, but different phases φX and φY , and different relative
amplitudes of annual variation, ǫX and ǫY . The expected correlation between
the two time series is [20]

r = cos 2πω(φX − φY ), (12)

which is maximally positive when the series are in phase, maximally negative
when they are π out of phase, and zero when they are ±π/2 out of phase. Thus,
if the two time series are close to being in phase, if researchers assume that
the null hypothesis is that r = 0, an erroneous conclusion might be drawn that
significant correlation due to potential causality. While we use the example of
first order harmonics here, note that any periodic time series can be expressed
as an infinite sum of sines and cosines; the first order harmonic is the first order
approximation to a periodic time series.

Because of the risk of assuming that two correlated but unrelated seasonal
time series is evidence of a cause/effect relationship, it is a worthwhile cross-
check to examine what are known as “seasonal differences” of the times series,
where for each data point we take the difference between the data for that day
(or weekly or monthly average) and the data taken one year prior (note that
this can only be done if the time series spans a period of several years). If data
has annual periodicity, examination of potential systematic variations that have
a time scale much less than one year can be facilitated by first removing the
variation in the data due to the annual periodicity via the seasonal differencing
method. Seasonal differencing methods have long been used for this purpose in
time series analyses in various fields, including biology and econometrics[15, 16].
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In the case of radionucleide decay data, if a seasonal variable like temperature
is suspected to cause variations in the data, it should be true that a an anoma-
lously hot or cold day at a season of the year (when compared to the temperature
typically observed at that location at that season) is associated with anomalies
in the decay rates (when compared to the decay rates typically observed in
that season). The seasonal differencing method cancels the effect of any annual
harmonic modulation, leaving just the day-to-day variations that allow us to de-
termine whether or not temperature anomalies really do appear to be correlated
to variations in the data.

In the next section we will discuss the application of regression, first deriva-
tive, partial correlation, and seasonal differencing analyses as a means to dis-
entangle various potential underlying causes of variation in radionucleide decay
data recorded at Brookhaven National Laboratory.

3. Case study: Brookhaven 32Si and 36Cl data

Beginning in 1982 and spanning a period of over four years, an experiment at
Brookhaven National Laboratory (BNL) collected decay data from a 32Si source,
and concurrently collected decay data from a 36Cl reference source [2]. Based
upon this data, the analysis estimated the 32Si half-life to be T1/2 = 172(4)
years. The BNL data, normalized by decay rate, are shown in Figure 1. As
seen in the Figure, the normalized decay rates are highly correlated, indicating
significant common systematic variation.

As also seen in Figure 1, the ratio of the normalized decay rates shows
significant annual variation, indicating that there is some source (perhaps more
than one) of systematic variation that differs between the two radionucleides.
Semkow (2009) hypothesizes that environmental variables like temperature may
be the cause [17], and indeed the Brookhaven experimenters themselves noted
dependence of their data on temperature [2]. In contrast, Jenkins et al ([18, 19])
posit that environmental variables cannot account for a significant fraction of the
observed variation, and the variation is instead primarily due to novel physics
associated with interaction of the decaying nuclei with particles or fields from
the Sun [18–20]. Under this latter scenario, the variation in the decay rates
would be proportional to 1/R2, where R is the Earth-Sun distance. Thus under
the hypothesis of Jenkins et al, the decay rates would vary harmonically with a
period of one year, with an annual maximum around January 4th of each year.
The hypothesis of Jenkins et al is that the variation related to novel physics
affects 32Si decays differently than those of 36Cl and thus only becomes apparent
after systematic variations common to both sources have been accounted for.

In the analysis of the Brookhaven data we give full consideration to both the
hypothesis of Jenkins et al and that of Semkow. We employ the statistical tests
described in the previous section to determine which effects do not appear to
be consistent with being related to the variations in the data. In order to assess
any potential dependence of the data on climate, online daily climate data are
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obtained for the Brookhaven locale over the period of experiment [9, 10].4

We first employ a partial correlation analysis to help distinguish between
variables that may underly variation in the data, and those that appear corre-
lated to the data for spurious reasons not related to cause and effect. The cor-
relations between the normalized 32Si/36Cl data and temperature, air pressure,
and 1/R2 are −0.62, −0.16, and 0.53, respectively, all of which are significant
to p < 0.01. The partial correlations between the data and temperature and
pressure, controlling for 1/R2, are both significant to p < 0.01. In contrast, the
partial correlation of the data and 1/R2, controlling for temperature and air
pressure, is 0.09, which is not significant (p = 0.17). We thus find the variations
data are not consistent with being related to variations in 1/R2.

To examine the use of linear regression methods for this same purpose, we
begin by linearly regressing the normalized 32Si/36Cl data on 1/R2, and the
daily average temperature, specific humidity, relative humidity, and air pressure.
Only temperature and air pressure yield regression coefficients significantly dif-
ferent from zero (both with p < 0.001), and account for 60% of the variation
in the data (temperature alone accounts for over 55% of the variation, but air
pressure does have a slight but significant contribution to the fit). The phase of
the data is 38± 5 days after January 1st, and the phase of the temperature and
air pressure regression is 38± 2 days. We note the phase of the data is statisti-
cally inconsistent with the phase of 1/R2. In addition, the regression coefficient
associated with 1/R2 is not significant when included in the regression fit that
also includes temperature and air pressure (p = 0.10). In Figure 1 we show
the regression with 1/R2, and the regression with temperature and air pressure,
overlaid on the 32Si/36Cl data.

To further check the potential relationship of climate variations to the vari-
ations in the normalized data, we regress the first derivatives of the time series.
We again find that only temperature and air pressure yield regression coefficients
significantly different from zero, and the regression coefficients are statistically
consistent with those obtained from the first fit. The first derivative of the data
regressed on the first derivative of 1/R2 does not yield a significant regression
coefficient, indicating that 1/R2 is inconsistent with having a causative effect
on the variations in the data.

We perform one further cross-check to confirm that the variations in the
Brookhaven data are indeed consistent with potentially being related to climate
by taking the seasonal differences of both the normalized data and the climate
time series (thus cancelling out any possible dependence on 1/R2 in the sea-
sonally differenced data). Regressing the seasonal differences of the data on the
seasonal differences of the climate variables again reveals that only temperature
and air pressure play a significant role, accounting for 50% of the variation in
the seasonally differenced data. The regression coefficients from the fit to the
seasonally differenced data are statistically consistent with those obtained from

4We point out here that these climate data, while readily accessible online now, were not
easily accessible to the researchers who originally conducted the Brookhaven experiment.
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the regression fit to the original time series.
Finally, we fit an exponential curve, with corrections for temperature and air

pressure variations, to the Brookhaven 32Si/36Cl data, as seen in Figure 1. The
fit of an exponential without correction for systematic climate-related variation
yields an estimate for the 32Si half-life of T1/2 = 171.6± 3.3, in agreement with
the estimate in Reference [2]. In contrast, correction for systematic climate-
related variation yields an estimated half-life T1/2 = 171.8±1.8, with uncertainty
1.87 times smaller than the half-life estimate obtained without correction for the
systematic variation (an uncertainty reduction equivalent to increasing the data
set by a factor of almost 3.5).

4. Discussion and Summary

The unbiased and precise determination of radionucleide half-lives requires
good understanding of systematic variations. We have shown that when data
from one reference radionucleide are used to control for systematic effects, resid-
ual variations can still remain in the data if there are sources of systematic
variation that are not common to both radionucleides. This residual variation
inflates the uncertainty on the radionucleide half-life, and can also bias the half-
life estimate if the residual variations have temporal trend. We have shown how
a second reference source can be used to correct for this variation if the cause
of the variation is unknown.

If the cause of systematic variation is known or suspected, and a time series
of measurements of that causative variable have been made coincident with the
data, we have shown that parameterization of the systematic variation in terms
of the causative variable can lead to significant reduction in the uncertainty of
the estimate of the radionucleide half-life. We have discussed statistical methods
that can be used to assess whether or not a variable is consistent with potentially
being truly causative of systematic variations in the data. These methods in-
clude regression, regression on the first derivatives, partial correlation analysis,
and seasonal differencing analysis.

Using previously published Brookhaven 32Si and 36Cl data as an illustrative
example, we have shown that the 32Si and 36Cl data appear to have systematic
variations that differ that between the radionucleides. Both climate variation
and novel physics have been proposed as causes of the differing systematics
[2, 17–20]. Using regression, first derivative regression, partial correlation, and
seasonal differencing analyses, we have determined that the systematic varia-
tions in the Brookhave data are statistically inconsistent with being caused by
novel physics, but are consistent with being potentially related to variations in
temperature and air pressure. Data dependence on temperature was previously
noted in Reference [2], but the apparent potential relationship to air pressure
is somewhat surprising given that Reference [2] mentions that the Brookhaven
detector was enclosed in a pressure regulated chamber. However, Reference [2]
also mentions that the regulation would at times fail when the air pressure was
low, which perhaps explains the slight but significant correlations we observe
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between variations in the data and variations in air pressure. In addition, pres-
sure dependence can potentially arise if pressure regulation is relative to outside
air pressure.

Using an exponential curve with corrections for temperature and air pres-
sure variation we fit the Brookhaven 32Si/36Cl data for the 32Si half life. We
obtain the 32Si half-life estimate T1/2 = 171.8± 1.8. This has uncertainty 1.87
times smaller than the original half-life estimate in Reference [2] (which was
obtained with an exponential fit with no correction for systematic variation),
T1/2 = 171.6± 3.3. The reduction in uncertainty when climate-related system-
atic variations are accounted for is equivalent to increasing the size of the data
set by a factor of almost 3.5.

We hope that the methods outlined in this paper will be helpful to researchers
who wish to understand and control the systematic variations in their radionu-
cleide decay data.
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Figure 1: The first plot shows 32Si and 36Cl decay data recorded over a four year period at
the Brookhaven National Laboratory. The data are normalized by estimated half-life. The
second plot shows the normalized 32Si data vs the 36Cl data; the data are highly correlated,
indicating that they share significant common systematic variation. Taking the ratio of the
normalized 32Si/36Cl data reveals annual variation, indicating that the decay data of the two
radionucleides also have differing sources of systematic variation, and/or sources of systematic
variation with differing amplitude (third plot). Overlaid is the regression fit with 1/R2 (note
that 1/R2 is out of phase with the data), and the regression fit with temperature and air
pressure (which is in phase with the data). In the fourth plot we show the 32Si/36Cl data.
Overlaid are the best-fit regression with an exponential, and the best-fit regression with an
exponential with correction for systematic variation related to variations in temperature and
air pressure.
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