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Despite dramatic increases in influenza vaccination coverage in the elderly population over the past
30 years, influenza mortality rates have remained static in this age group. Children are believed to be
the primary spreaders of diseases such as influenza due to their high degree of inter-contact in school
settings, and several studies have examined control of influenza in the entire population, including the
elderly, via targeted vaccination of school children. However, such vaccination programs are expensive,
and fraught with difficulties of public perception of what may be seen as an unnecessary vaccination
against a disease that is normally mild in the children themselves.

In the study presented here, we examine the control of influenza in the elderly using simple social dis-
tancing measures during an influenza epidemic. The recent work of Glasser et al. characterizes daily con-
tact interactions within the population in terms of preferential mixing between age group peers, co-
workers, and parents and children. We expand upon this to include interactions between grandparents
and grandchildren, and fit the parameters of this formulation to the recently published social contact sur-
vey data of Mossong et al. Using this formulation, we then model an influenza epidemic with an age-
structured deterministic disease model and examine how reduction in contacts between grandchildren
and grandparents affects the spread of influenza to the elderly.

We find that over 50% of all influenza infections in the elderly are caused by direct contact with an
infected child, and we determine that social distancing between grandparents and grandchildren is
remarkably effective, and is capable of reducing influenza attack rates in the elderly by up to 60%.

� 2012 Elsevier Inc. All rights reserved.
Introduction

Influenza, a seasonal viral disease, presents a significant mor-
bidity and mortality burden on the population, with a typical sea-
sonal influenza epidemic in the United States killing around 40,000
people per year [1]. Most of the hospitalization and mortality bur-
den is carried by people aged over 65 years (the influenza mortality
and hospitalization rates of elderly people are 100 and 20 times
higher than those of people aged 5–49, respectively [2,3]), and
the direct cost of influenza hospitalizations in the elderly in the
U.S. approaches half a billion dollars each year [4].

Because of the high morbidity and mortality burden in this age
group, attempts have been made in recent decades to increase the
vaccination rates among the elderly, and indeed vaccine coverage
is highest in this age group, at a current level of 65%, compared
to 20% for children age 5–19 years [5]. Despite a rise in elder vac-
cination rates from 15% to 65% between 1985 and 2000, however,
elderly influenza mortality rates remained largely unaffected [6],
likely due to low vaccine efficacy among people aged 65 and older
[7,8].
ll rights reserved.
Children are thought to be the primary spreaders of diseases
like influenza within a population because of their high contact
rate with their peers in school settings [9], and it has been shown
that optimal influenza control in the entire population, including
the elderly, can thus be achieved if vaccines are preferentially dis-
tributed to children [10–13]. However, such vaccination programs
are expensive, and also can be fraught with particular difficulties of
public acceptance when children are involved. Ref. [14] discusses
the issue of individual perspectives often being at odds with those
of policy makers when it comes to vaccinations, and notes the
‘need for improved, less expensive systems for protecting individ-
uals against influenza.’ In this analysis, we thus explore the efficacy
of reduction of influenza in the elderly by perhaps the cheapest
means possible; simple social distancing.

The types of social contacts people preferentially make each day
depend on age, but most can be approximately categorized as peer-
to-peer interactions (i.e., interactions with people of approximately
one’s own age), parent/child interactions, grandparent/grandchild
interactions, and co-worker interactions [15]. Since children are
the primary spreaders of influenza in a population, the social dis-
tancing measures we examine here are reduction of grandparent/
grandchild interactions.

The simplest parameterization of the preferential contacts
amongst members of a population includes only the dominant

http://dx.doi.org/10.1016/j.mbs.2012.07.007
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peer-to-peer interactions, as described in Refs. [16,17]. The recent
work of Glasser et al. extends this parameterization to include the
additional preference for parents to interact with children (and
vice versa), and co-worker interactions [15].

A recent study by Mossong et al. asked respondents in eight
European countries to keep daily diaries of their contacts [18]. Be-
cause we wish to examine the effect on influenza spread of social
distancing (reduced contacts) between grandchildren and grand-
parents, in this analysis we further extend the parameterization
of Glasser et al. to include grandparent/grandchild interactions.
We then use the contact survey data of Mossong et al. to fit the
parameters of this formulation.

We model the spread of influenza within a population with a
Susceptible, Infected, Recovered (SIR) mathematical model with
age-heterogeneity, using our formulation of the contact matrix to
describe mixing between the age groups. Using this model, we
study the impact of reduced interaction between grandparents
and grandchildren on the attack rates of influenza in the elderly.
We study three scenarios; the first two keep the total number of
contacts per day of the elderly person the same, and simply re-
apportion contacts from grandchildren to peers, or to adult chil-
dren. In the third scenario, the number of contacts the elderly per-
son makes per day are reduced because of the reduced interaction
with grandchildren.

We find with this model that 50% of influenza infections in the
elderly are due to direct contact with an infected child, and we
subsequently show that even moderate social distancing between
grandparents and grandchildren has the potential to significantly
reduce the morbidity burden on the elderly during an influenza
epidemic. These results underline the role that mathematical mod-
els can play in helping to assess disease intervention strategies.

In the following sections we describe the model and our formu-
lation of the contact matrix, including the details of our fit of the
parameters of that formulation to the contact survey data of Mos-
song et al. We then describe the simulation studies whereby we
scale the grandparent/grandchild interactions, followed by a sum-
mary of results.
Methods

Model

Spread of disease between n age groups is described in these
studies using an age-structured Susceptible, Infected, Recovered
‘SIR’ model, with infectious symptomatic and asymptomatic clas-
ses, Is and Ia [19]:
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where c is the recovery rate (assumed to be the same for sympto-
matics and asymptomatics [20–22]), b is the transmission rate on
contact,1 0 6 g 6 1 is the discount on transmission for the asymp-
1 In this analysis we assume the transmission rate is constant, and ignore possible
year-to-year fluctuations in transmissibility, since the goal of these studies is not to
explore the periodicity or long-term dynamics of influenza outbreaks, but merely to
compare theoretical expectations in influenza disease burden under various social
distancing scenarios.
tomatic class, 0 6 a 6 1 is the fraction of infections that are asymp-
tomatic, and where the population size is

N ¼
X

i

ðSi þ Is
i þ Ia

i þ RiÞ ¼
X

i

Ni: ð2Þ

We ignore vital dynamics in the model, under the assumption that
the epidemic occurs on a very short time scale relative to human
reproduction and lifespan dynamics. The matrices Ca

ij and Cs
ij are

known as contact matrices, and are the average number of contacts
made per day by an individual in class i with an individual in class j,
where the individual in class j is in the asymptomatic or symptom-
atic class, respectively. The system of equations has initial condi-
tions at the time of introduction, t ¼ 0, of the infection into the
population:

Sið0Þ ¼ fiNi � 1;
Ia
i ð0Þ ¼ a; ð3Þ

Is
i ð0Þ ¼ 1� a;

Rið0Þ ¼ ð1� fiÞNi;

where 1� fi is the pre-immune fraction in age group i, due to, for
instance, vaccination or prior infection.

Numerical solutions to Eq. (1) are obtained with methods in
odesolve library of the R statistical programming language [23].

The basic reproduction number, R0, the average number of sec-
ondary infections produced by one infected individual during his/
her entire period of infection in an entirely susceptible population,
is calculated from the next generation matrix of Eq. (1). If we as-
sume that symptomatic sick people on average reduce their con-
tacts by a fraction 1� freduc, then Cs

ij ¼ freducCa
ij, and we obtain R0

to be the largest eigenvalue of the Ca
ijNi=Nj matrix, times

bðfreduc � afreduc þ agÞ=c. The effective reproduction number, taking
into account pre-immunity, is the largest eigenvalue of the
Ca

ijfiNi=Nj matrix, times bðfreduc � afreduc þ agÞ=c.

Parameterization of the contact matrix

In a closed population, a contact matrix Cij must satisfy reci-
procity, which at the population level means that the total number
of contacts between group i to group j must equal the total number
of contacts from group j to group i [24,25]. This implies that
CijNi ¼ CjiNj, where Ni is the number of people in group i. We define
ai ¼

P
jCij, and the matrix cij ¼ Cij=ai. Note that

P
jcij ¼ 1.

In the simplest of preferential mixing formulations, a propor-
tion, �i, of the total i group-contacts is reserved for others (‘peers’)
in group i, and the complement ð1� �iÞ is split among all groups
[16]:

cij ¼ �idij þ ð1� �iÞ
ð1� �jÞajNjX

k

ð1� �kÞakNk

; ð4Þ

where dij ¼ 1 if i ¼ j, and is 0 otherwise.
The recent work of Glasser et al. extends this formulation with a

parameterization of the contact matrix that includes the additional
preferences of co-workers to interact, and parents to interact with
children [15]. In this work we extend the formulation of Glasser et
al. to include interactions between grandparents and grandchil-
dren, thus allowing us to study how reduction of contacts between
these two groups can influence the spread of influenza within a
population.

In order to capture the various preferential mixing patterns, we
thus parameterize the cij matrix as [15]

cij ¼ /ij þ 1�
X6

l¼1

�li

 !
fj; ð5Þ
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where �li is the fraction of contacts group i reserves for peers (l ¼ 1),
children (l ¼ 2), parents (l ¼ 3), grandchildren (l ¼ 4), grandparents
(l ¼ 5), and co-workers (l ¼ 6), and fj is the fraction of ‘everyone
else’ in group j,

fj ¼
1�

P6
l¼1�lj

� �
ajNjPn

k¼1 1�
P6

l¼1�lk

� �
akNk

: ð6Þ

We define

/ij ¼ �1i
qijP
kqik
þ �2i

rijP
krik
þ �3i

sijP
ksik
þ �4i

tijP
ktik
þ �5i

uijP
kuik

þ �6iv ij; ð7Þ

where v ij parameterizes the workplace interactions (more on that
in a moment), and qij; rij; sij; tij, and uij parameterize the peer-to-
peer, parent-to-child, child-to-parent, grandparent-to-child, and
child-to-grandparent interactions.

In Fig. 1 we show the contact matrices for various settings, as
determined from the Mossong et al. contact survey data. Note that
the contact matrix for interactions in the home in particular shows
clear evidence of peer-to-peer interactions along the main diago-
nal, and parent/child and grandparent/grandchild interactions
along the first and second off-diagonals, respectively. The parent/
child interactions are separated from the main diagonal by the
generation length G (the average age at which women bear daugh-
Fig. 1. The average number of daily contacts, weighted by duration, made by participants
data of Mossong et al., and corrected for reciprocity. The Mossong data allows for determ
contacts in particular show evidence of peer-to-peer, parent/child, and grandparent/gr
parameterization of the contact matrix.
ters), and the grandparent/grandchild interactions are 2G from the
main diagonal. As seen in Fig. 2 we parameterize these interactions
using Gaussian ‘tubes’ that run along the diagonals; for instance,
for the peer-to-peer interactions along the main diagonal, the
Gaussian tubes take into account the fact that people tend to inter-
act with people of roughly the same age, but not necessarily ex-
actly the same age [15,17]. The spread in ages of contacts (the
width of the Gaussian tube) may depend on the age of participant.
The Gaussian tube parameterization of the peer-to-peer, parent/
child, child/parent, grandparent/grandchild, and grandchild/grand-
parent interactions is thus
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vs age of contact (binned in age groups of one year) derived from the contact survey
ination of where contacts occurred (work, school, home, etc.). Note that the home

andchild interactions, indicating that such interactions should be considered in a



Fig. 2. As demonstrated in this graphic, we parameterize interactions using
Gaussian ‘tubes’ that run along the peer-to-peer (yellow), parent/child (blue), and
grandparent/grandchild (green) interaction diagonals. The parent/child and grand-
parent/grandchild off-diagonals are separated from the main peer-to-peer diagonal
by G and 2G, respectively, where G is the average generation length. As seen in Eq.
(8), the Gaussian tubes have widths that may vary with age (the widths are
determined from fits to the contact matrices derived from the Mossong et al.
contact survey data). Note that the widths and heights of the Gaussian tubes shown
along the diagonals are merely for illustrative purposes, and do not reflect the
values fitted to the Mossong data. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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respectively, where the age limits on the ith bin in contact matrix
are ½xmin;max�, and the age limits on the jth bin are ½ymin; ymax�.
Note that the contact matrix is not continuous, but rather discretely
binned, thus the double integral translates the continuous Gaussian
tube formulation into an estimated total number of contacts within
a bin of xmin to xmax in the participant age, and ymin to ymax in the
contact age.

Because reciprocity must be satisfied, the amount of time par-
ents spend with children must equal the amount of time children
spend with parents, and similarly for the grandparent/grandchild
interactions. This leads to the constraints

�3i ¼ �2ðiþGÞ
aðiþGÞNðiþGÞ

aiNi
;

�5i ¼ �4ðiþ2GÞ
aðiþ2GÞNðiþ2GÞ

aiNi
; ð9Þ

where �3i ¼ 0 if i < G and �5i ¼ 0 if i < 2G. Reciprocity also leads to
the constraints

r3i ¼ r2ðiþGÞ;

r5i ¼ r4ðiþ2GÞ: ð10Þ

Examination of the patterns in the contact survey data of Mos-
song et al. indicate that co-worker contacts are approximately de-
scribed by a rectangular area bounded by minimum and maximum
worker ages, Wmin and Wmax, respectively, within which contacts
are roughly independent of age, as seen in Fig. 1 [15]. The work-
place interaction term in Eq. (7) must also satisfy reciprocity,
which implies that Niaiv ij ¼ Njajv ji. We thus define for v ij:

v ij ¼
dWmin6i;j6Wmax

ðWmax �WminÞ
ðaiNi þ ajNj �

P
kakNk=nÞ

aiNi
; ð11Þ
where dWmin6i;j6Wmax is a two-dimensional rectangular Heavyside
step function, which is equal to one when i and j are both between
Wmin and Wmax, and zero otherwise.

In this analysis we fit the parameters of /ij

~h ¼ ð�1i; �2i; �4i; �6i;r1i;r2i;r4i;G;Wmin;WmaxÞ ð12Þ

by fitting to the daily contact survey data of Mossong et al. [18].
The data from the Mossong et al. surveys are contained in two

databases; one contains the participant demographic information,
and the other contains the contact information for each participant
derived from their daily diaries. Since close contacts are more
likely to spread disease, we select the contact survey data for con-
versations that that involved physical contact. We cross-reference
the data-bases, selecting diary entries that are complete in all
information that is relevant to this analysis. We pre-process the
data by looping over the diary for each participant and calculating
the total number of contacts, and the number of contacts vs con-
tact age.

When the maximum age cut-off in the Mossong data for partic-
ipants and their contacts is set to 80 years, the output file of pre-
processing includes, in essence, a very sparse 80� 80 contact ma-
trix for each of the n participants, Ak, k ¼ 1; . . . ;n. In order to deter-
mine an average 80� 80 contact matrix for the population, B, we
take the average of the Ak, weighted with the Mossong et al. diary
weights, wdiary

k :

B ¼
X

k

ŵdiary
k Ak; ð13Þ

where ŵdiary
k ¼ wdiary

kP
j
wdiary

j

. The weighted variance of B will be needed for

calculation of the Pearson-v2 statistic when fitting to the contact
matrix. It is:

ðDBÞ2 ¼
X

k

ŵdiary
k ðAk � BÞ2: ð14Þ

The matrix B does not necessarily fulfill reciprocity conditions,
because the Mossong et al. survey population was not necessarily
closed. We thus perform a reciprocity correction by setting [13]

Cij ¼ ðBijNi þ BjiNjÞ=2Ni: ð15Þ

The variance of C, ðDCÞ2, is straightforwardly calculated from Eqs.
(15) and (14) by propagation of errors. Population sub-group sizes
are estimated from U.S. census data [26].

The resulting 80� 80 contact matrix is shown in Fig. 1. Also
shown are the contact matrices for contacts that occur in work,
school, home, or other places, as keyed in the Mossong et al. data-
base. The average 80� 80 contact matrix is too sparse for fitting
purposes because many of the bins have estimates of an average
contact rate of zero; because there are a finite number of diaries
in the Mossong data set, if we use very fine age binning there
may be some age groups for which there are no reported contacts
with another particular age group (say, for instance 77 year olds
contacting a 1 year old), but common sense dictates that while
the true average contact rate between those two age groups might
be low, it is certainly non-zero because there obviously exists
somewhere a 77 year old who routinely contacts a 1 year during
the course of their day (however, such 77 year olds did not happen
to submit a diary in the Mossong survey). Bins for which the esti-
mated contact rate is zero are problematic in part because DC is
also estimated to be zero, and, as seen below, the variance appears
in the denominator in the calculation of the Pearson-v2 fitting sta-
tistic. In addition, the calculation of the Pearson-v2 statistic carries
the underlying assumption that the estimates of the contact rate
within a bin in the matrix are drawn from a Normal distribution
centered about the true value, with variance estimated by ðDCÞ2
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[27]. The Normal approximation to the estimates of the mean and
variance is approached when the number of non-zero elements
contributing to the average is at least 5 [27]. However, many bins
in the 80� 80 contact matrix do not have at least 5 non-zero ele-
ments contributing to the average within that bin.

Equally problematic is that an n� n matrix necessitates fitting
Oð7nÞ parameters, but even the most sophisticated non-linear
optimization packages have difficulty with simultaneous optimiza-
tion of more than just a few dozen parameters. The solution to both
problems is thus to combine rows and columns of this matrix. We
choose a binning in 16 increments of 5 years between 0 and
80 years of age. In order to maintain reciprocity, columns (j) are
summed, and rows (i) are averaged with weights

P
kNk=Ni. The

resulting contact matrix, Cij, is shown in Fig. 3. Each bin of this ma-
trix has at least nine non-zero elements of A contributing to the
average within that bin (on average over 100 non-zero contribu-
tions per bin).

We use the Minuit non-linear optimization fitting package [28]
to determine the parameters of Eq. (7) that minimize the Pearson-
v2 statistic [27]:

v2 ¼
X15

i¼1

X15

j¼1

½Cij � aicijð~hi;~hjÞ�2

½DCij�2
; ð16Þ

where ai ¼
P

jCij. Based on the patterns observed in the Mossong et
al. work-place contact data (Fig. 1), in the fit we set
Wmin ¼ 20 years, Wmax ¼ 65 years, and we assume that the �6i are
independent of age. The results of the r’s from the fit are shown
in Fig. 4. The Pearson-v2 statistic is 165 for 154 degrees-of-freedom
(p ¼ 0:26). Note that many of the r are zero due to age constraints
(for instance, only people older than G can be considered old en-
ough to be parents). The r2i and r4i are all statistically consistent
with being independent of age, and with being equal to each other
(and likewise the r3i and r5i through the reciprocity constraint). We
thus repeat the fit, holding all the off-diagonal r2i to r5i equal to a
single value, which is allowed to float. The Pearson-v2 statistic for
the new fit is 175 for 168 degrees-of-freedom (p ¼ 0:34). The value
of the off-diagonal r’s is found to be 4:50� 0:33 years. The resulting
Fig. 3. The average number of daily contacts made by participants vs age of contact deriv
contact matrix is used in this analysis to fit the parameters of /ij.
parent/child, grandparent/grandchild, and peer-to-peer interaction
fractions from the fit are shown in Fig. 5. The value of G from the
fit is G ¼ 29:30� 0:27 years, and co-worker interaction fraction
�6 ¼ 0:095� 0:022. The results are summarized in Table 1.

We assume in this analysis that the contact matrix to asymp-
tomatic individuals, Ca

ij is equal to this parameterization. The con-
tact matrix to symptomatic individuals, Cs

ij is derived from this
parameterization, multiplied by a factor freduc to reflect the fact that
sick people tend to reduce contacts with others in the population,
where freduc ¼ 0 would reflect complete isolation of the sick
individual.
Results

Children are hypothesized to be the primary spreaders of dis-
ease within a population, due to their strong peer-to-peer contacts
which dominate the Cij matrix, as seen in Fig. 3. We determine
their impact on the spread of influenza in the elderly, we simulate
an influenza epidemic using ODE disease model in Eq. (1) and the
parameterization of Cij described in the previous section, with
effective reproduction number Reff

0 ¼ 1:4 [29], and 1=c ¼ 4:8 days
[30]. The transmission rate, b, is calculated from
Reff

0 c=ðfreduc � afreduc þ agÞ, divided by the largest eigenvalue of
the CijfiNi=Nj matrix.

Challenge studies have shown that the asymptomatic fraction
of influenza infections is around a ¼ 33% [30], however this is
likely an underestimate since the volunteers knew they had been
challenged, and thus were anticipating symptoms to develop.
Seroepidemiological studies in conjunction with population sur-
veys of illness recollection indicate that the fraction of asymptom-
atic infections is likely much higher, up to 60% for seasonal
influenza, and even higher for pandemic strains[34–37]. We as-
sume a ¼ 0:50 here.

The amount of virus shed by asymptomatics has been poorly
studied, however two viral challenge studies have found that
nearly all infected and asymptomatic people shed detectable
amounts of virus, and find a positive correlation between the
ed from the contact survey data of Mossong et al., and corrected for reciprocity. This



Fig. 4. Widths of the Gaussian kernels, as determined by the first iteration of the fit to the contact matrix, where all parameters freely float. The red lines denote the flat line fit
to �2i and �4i . The child-to-parent, r3i , and grandchild-to-grandparent, r5i, are not shown because they are directly related to �2i and �4i due to reciprocity constraints on the
contact matrix. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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amount of virus shed and the severity of clinical symptoms [30–
32]. Ref. [33] fits an SEIR-type model to 1918 pandemic influenza
incidence data, examining values of g between 0.4 and 0.6, and
finds the best-fit value g � 0:5. We thus assume that asymptom-
atic infected people have a discount on transmission of g ¼ 0:50.
We also assume that symptomatic infected people reduce their
contacts by a factor of freduc ¼ 0:50.

The vaccination coverage within each of the age groups is as-
sumed to be 34% age 0–4 years, 20% age 5–19 years, 17% age 20–
49 years, 35% age 50–64 years, and 63% age 65 years and over
[5]. The vaccine efficacy at producing immunity is assumed to be
80% below age 65, and 60% age 65 years and over [38]. Very few
(if any) serological studies have assessed seasonal influenza pre-
immunity of the population due to prior infection with related sea-
sonal influenza strains. However, a 2009 Finnish study assessed
immunity within the population to two AH1N1 and AH3N2 sea-
sonal influenza strains that had circulated in the prior year [39].
The age-specific immune fractions within the population were in
most cases less than, or similar to, the vaccination pre-immunities
we assume. The age-specific immune fractions to strains that are
somewhat mutated from these two strains would be even smaller.
We thus assume in this study that the pre-immunity due to vacci-
nation coverage approximates pre-immunity due to vaccination
coverage and/or prior infection with related strains.

From the model simulation using Eq. (1) and our parameterized
contact matrix, we determine the final fraction of elderly people
over age 65 infected by the end of the epidemic, and the fraction
of those infections that were due to direct contact with an infected
child under the age of 20. The results are shown in Fig. 6. We note
that 50% of all influenza infections in the elderly are caused by di-
rect contact with infected children. Note that even though the esti-
mated attack rates in the elderly are relatively low compared to the
overall model estimated population attack rate of 14%, the morbid-
ity and mortality burden is disproportionately carried by the el-
derly in a seasonal flu epidemic, likely because the existence of
co-morbidities and weakened immune systems tends to make
influenza infection much more serious in this age group than it is
for younger people.

We examine whether or not the spread of influenza among el-
derly people can be significantly influenced by simple reduction
of the fraction of their contacts with their grandchildren during
the influenza season. Note that due to reciprocity constraints, scal-
ing the fraction of the grandparent-to-grandchild contact fraction
similarly scales the grandchild-to-grandparent contact fraction.
We repeat the model simulations using Eq. (1), examining three
scenarios:

� The total average number of contacts, ai, remain the same, and
the contacts are re-apportioned to their elder peers.
� The total average number of contacts, ai, remain the same, and

the contacts are re-apportioned to their children. Note that the
children of the elderly are adults.
� As �4i and �5i are scaled by a factor, f, the contacts are not re-

apportioned, and the average number of contacts made
between the elderly and their grandchildren, and vice versa,
are correspondingly reduced by �4iaif and �5iaif , respectively.

The results are shown in Fig. 7. Reduction of elder contacts by
reducing contacts with their grandchildren appears to be the most
effective control measure, reducing the final size of the epidemic in
the elderly by a relative factor of over 60% if grandparents com-
pletely avoid their grandchildren, and an approximate 30% reduc-
tion in the final size of the epidemic if grandparents reduce
contact with grandchildren by half. A 10% reduction is achieved
if grandparents reduce contact by 15% (i.e., equivalent to around
one day out of every seven, if they normally see their grandchil-



Fig. 5. Contact fractions, as determined by the second iteration of the fit to the contact matrix, wherein the widths of the off-diagonal Gaussian kernels were constrained to be
equal.

Table 1
Parameters of our formulation of the contact matrix, as fitted to the data of Mossong et al. Additional parameters are G ¼ 29:30 years, �6 ¼ 0:095, and
r2 ¼ r3 ¼ r4 ¼ r5 ¼ 4:50 years. The Ni are taken from Ref. [26], and are expressed in millions of people.

Age group i Ni ai r1i �1i �2i �3i �4i �5i

0–4 20.66 4.25 1.93 ± 0.54 0.42 ± 0.04 – 0.13 ± 0.03 – 0.03 ± 0.01
5–9 20.00 8.15 1.06 ± 0.18 0.68 ± 0.03 – 0.09 ± 0.02 – 0.02 ± 0.01
10–14 20.25 10.29 1.02 ± 0.11 0.80 ± 0.01 – 0.09 ± 0.01 – 0.01 ± 0.01
15–19 21.59 10.21 0.90 ± 0.09 0.83 ± 0.01 – 0.11 ± 0.01 – 0.01 ± 0.01
20–24 21.17 5.32 2.37 ± 0.34 0.67 ± 0.03 – 0.11 ± 0.02 – –
25–29 21.38 4.66 3.69 ± 0.56 0.62 ± 0.04 – 0.06 ± 0.02 – –
30–34 19.70 4.24 3.60 ± 0.79 0.39 ± 0.05 0.14 ± 0.03 0.05 ± 0.02 – –
35–39 21.25 4.40 5.81 ± 1.29 0.33 ± 0.05 0.16 ± 0.03 0.06 ± 0.02 – –
40–44 21.88 4.35 3.47 ± 0.86 0.30 ± 0.04 0.19 ± 0.02 0.02 ± 0.01 – –
45–49 22.90 3.46 7.92 ± 0.84 0.64 ± 0.03 0.30 ± 0.02 0.01 ± 0.01 – –
50–54 21.21 3.29 5.00 ± 0.85 0.41 ± 0.04 0.18 ± 0.03 – – –
55–59 18.38 2.74 4.41 ± 1.05 0.46 ± 0.04 0.13 ± 0.04 – 0.01 ± 0.02 –
60–64 14.73 2.42 5.99 ± 1.17 0.46 ± 0.05 0.12 ± 0.04 – 0.06 ± 0.03 –
65–69 10.95 1.77 4.67 ± 1.2 0.58 ± 0.04 0.28 ± 0.10 – 0.17 ± 0.03 –
70–74 8.64 1.38 9.64 ± 5.70 0.43 ± 0.12 0.16 ± 0.10 – 0.24 ± 0.06 –
75–79 7.30 0.72 17.20 ± 11.03 0.21 ± 0.26 0.13 ± 0.16 – 0.31 ± 0.05 –
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dren daily). We note, however, that the final size of the epidemic in
the entire population is only reduced by a relative factor of at most
2% by this control measure, indicating it is the elderly who reap
nearly all the benefit.

Re-apportionment of grandparent/grandchild contacts by the
elderly to their elder peers is a close second as a control measure,
reducing the final size of the epidemic by nearly as much as a sim-
ple reduction in contacts. Re-apportionment of grandparent/grand-
child contacts by the elderly to their adult children is not as
effective (although up to a 40% relative reduction is still seen),
likely because these adult children pass infections to the elderly
from their own young children.
Discussion and summary

In this analysis we used contact survey data and expanded upon
the work of Glasser et al. [15] to obtain an age-stratified parame-



Fig. 6. Cumulative fraction of elderly people (age 65 years and over) infected in an
influenza epidemic as simulated using the parameterization of Cij determined by
this analysis. Shown in red are the infections that are caused by direct contact with
an infected child aged less than 20 years. Over 50% of infections in elderly people
are caused by direct contact with an infected child. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 7. Final size of influenza epidemic in sub-population of elderly people (as
fraction of that sub-population) for three different scenarios of grandparents
avoiding contact with grandchildren: the fraction of contacts made between
grandparents and grandchildren is scaled, and the contacts are either re-appor-
tioned to elderly peers or adult children such as to maintain the total number of
contacts made by the elderly person (red and green, respectively), or the number of
total contacts is simply reduced by the reduction in contacts with grandchildren
(black). Re-apportionment of contacts to elder peers during the flu season is nearly
as effective at reducing the attack rate as reduction in contacts. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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terization of a population contact matrix in terms of peer-to-peer,
parent/child, grandparent/grandchild, and co-worker interactions.

Using this parameterized contact matrix, we modeled a hypo-
thetical influenza epidemic using an age-stratified SIR model with
preferential mixing between groups. We determined that over 50%
of influenza infections in the elderly are caused by direct contact
with an infected child.
This result is in notable agreement with analyses of ILI mortality
rates in Japan between 1949 and 1998; between 1962 and 1987
most Japanese school children were vaccinated for influenza, but
mandatory vaccination laws were relaxed in 1987 and repealed
in 1994 [40,41]. The studies found that as mandatory influenza
vaccination of school children ceased, excess ILI mortality, domi-
nated by deaths in the elderly, increased. The Japanese studies
indicate that children are indeed significant spreaders of influenza
to the elderly.

The elderly carry much of the hospitalization and mortality bur-
den of influenza during a typical influenza season, but because vac-
cines are known to not be very effective in the elderly [7,8], other
control measures must be considered, such as vaccination pro-
grams of those whom they contact, as noted in the Japanese expe-
rience and other studies [10–13,40,41]. Social distancing is an
inexpensive disease intervention to implement, and, given the
apparent strong influence of children on the spread of influenza
to the elderly, the efficacy of social distancing between these two
groups during an influenza epidemic is worthy of assessment.

The most likely children an elderly person will contact are his or
her grandchildren. Using our parameterized contact matrix, we
thus examined the effect of scaling the grandparent/grandchild
interactions on the final size of the influenza epidemic in the el-
derly population. Three scenarios were examined; in the first
two, the total number of daily contacts of the elderly individuals
was kept the same, but the reduction in their contacts with grand-
children was either re-apportioned to their elderly peers, or to
their adult children. In the third scenario, the elderly simply
avoided contact with grandchildren to some greater or lesser de-
gree, and their contacts were correspondingly reduced.

We found that re-apportionment of grandchild contacts to elder
peers was almost as effective as simply reducing contacts by that
amount, reducing the final size of the epidemic in the elderly by
a relative fraction of 60% if the elderly were to completely avoid
their grandchildren (and a 30% reduction if the elderly reduce their
contacts with their grandchildren by half). Re-apportionment of
contacts, rather than a reduction in contacts, is perhaps a more
ideal result for disease control, given that studies have shown that
loneliness and lack of social contact can detrimentally affect peo-
ples’ health, making them more prone to fall ill with infectious dis-
ease [42,43].

It is quite interesting to note that all three reduction of grand-
parent/grandchild interaction scenarios had essentially no effect
on the final size of the epidemic in the rest of the population. This
implies that, on average, an elderly person has much to gain by
social distancing, but the rest of the population will not be detri-
mentally affected if an elderly person chooses not to reduce con-
tacts with his or her grandchildren during an influenza season.
This is in sharp contrast with almost any other control measure,
for which the choice of an individual to not participate will likely
detrimentally affect not only the individual, but the rest of the
population as well. For example, in influenza vaccination pro-
grams of school children, both a child and the rest of the popula-
tion will, on average, tend to be detrimentally affected if the child
is not vaccinated. The spread of influenza to both an individual
and the rest of the population may also be affected by the hy-
giene habits of the individual (for instance, the regularity of hand
washing).

Our study has some limitations; in particular we note that since
the contact matrix parameterization is fit to European contact sur-
vey data, the results of this study are most applicable to European
populations, and may or may not apply to U.S. populations where
the elderly may have somewhat different contact patterns with
children. For instance, the population simulations of Ref. [44] sug-
gest that U.S. elderly spend roughly 10% of their contacts with chil-
dren (in Europe it is more than 20%).
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In summary, our model studies suggest that influenza vaccina-
tion strategies need not be the only disease interventions consid-
ered for elderly persons, and that simple social distancing can be
remarkably effective in reduction of influenza attack rates in this
age group. Our studies underline that mathematical models, such
as the ones we have implemented here, can be helpful for under-
standing complex disease transmission dynamics, and can be use-
ful for identifying optimal control strategies.

Acknowledgements

We are grateful to J. Glasser, C. Castillos-Chavez, and F. Brauer
for their helpful comments related to this work.

This research is partially supported by NSF grants DMS-
0719697 and DMS-1022758.

References

[1] J. Dushoff, J.B. Plotkin, C. Viboud, D.J. Earn, L. Simonsen, Mortality due to
influenza in the United States American, J. Epidemiol. 163 2 (2006) 181.

[2] W.W. Thompson et al., Mortality associated with influenza and respiratory
scycytial virus in the United States, JAMA 289 (2) (2002) 179.

[3] W.W. Thompson et al., Influenza-Associated Hospitalizations in the United
States, JAMA 292 (11) (2004) 1333.

[4] A.M. McBean, P.L. Hebert, New estimates of influenza-related pneumonia and
influenza hospitalizations among the elderly, Int. J. Infect. Dis. 8 (4) (2004) 227.

[5] Centers for Disease Control and Prevention, National Health Interview Survey
<www.cdc.gov/NCHS/nhis/nhis_2007_data_release.htm>2007 (accessed
26.05.2011).

[6] L. Simonsen et al., Impact of influenza vaccination on seasonal mortality in the
US elderly population, Arch. Intern. Med. 165 (2005) 265.

[7] T.M. Govaert et al., The efficacy of influenza vaccination in elderly individuals,
JAMA 272 (1994) 1661.

[8] P. Gross et al., The efficacy of influenza vaccine in elderly persons: a meta-
analysis and review of the literature, Ann. Intern. Med. 123 (7) (1995).

[9] J.S. Brownstein, K.P. Kleinman, K.D. Mandl, Identifying pediatric age groups for
influenza vaccination using a real-time regional surveillance system, Am. J.
Epidemiol. 162 (2005) 686.

[10] I.M. Longini Jr., M.E. Halloran, Strategy for distribution of influenza vaccine to
high-risk groups and children, Am. J. Epidemiol. 161 (2005) 303.

[11] D. Weycker et al., Population-wide benefits of routine vaccination of children
against influenza, Vaccine 23 (10) (2005) 1284.

[12] I.M. Longini, E. Ackerman, L.R. Elveback, An optimization model for influenza A
epidemics, Math. Biosci. 38 (1978) 141.

[13] J. Medlock, A.P. Galvani, Optimizing influenza vaccine distribution, Science 325
(1705) (2009) 1705.

[14] S.C. Schoenbaum, The economic impact of influenza: the individual’s
perspective, Am. J. Med. 82 (6, Suppl. 1) (1987) 26.

[15] J. Glasser, Z. Feng, A. Moylan, R. Germundsson, S. Del Valle, C Castillo-Chavez,
Mixing in age-structured population models of infectious diseases, Math.
Biosci. 235 (1) (2012) 1.

[16] J.A. Jacquez, C.P. Simon, J. Koopman, L. Sattenspiel, T. Perry, Modeling and
analyzing HIV transmission: the effect of contact patterns, Math. Biosci. 92
(1988) 119.

[17] H.W. Hethcote, Modeling heterogeneous mixing in infectious disease
dynamics, in: V. Isham, G. Medley (Eds.), Models for Infectious Human
Diseases: Their Structure and Relation to Data, Cambridge University, 1996, p.
215.

[18] J. Mossong et al., Social contacts and mixing patterns relevant to the spread of
infectious disease, PLoS Med. 5 (3) (2008) 381.
[19] R. M Anderson, R.M. May, Infectious Diseases of Humans, Dynamics and
Control, Oxford University, Oxford, 1991.

[20] G. Chowell et al., Transmission dynamics of the great influenza pandemic of
1918 in Geneva, Switzerland: assessing the effects of hypothetical
interventions, J. Theor. Biol. 241 (2006) 193.

[21] Y.-H. Hsieh, Age groups and spread of influenza: implications for vaccination
strategy, BMC Infect. Dis. 10 (2010) 106.

[22] M.E. Aelexander et al., Emergence of drug resistance: implications for antiviral
control of pandemic influenza, Proc. Biol. Sci. 274 (1619) (2007) 1675.

[23] R Development Core Team, R: a language and environment for statistical
computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-
900051-07-0. <http://www.R-project.org>, 2008.

[24] J. Wallinga et al., Using data on social contacts to estimate age-specific
transmission parameters for respiratory-spread infectious agents, Am. J.
Epidemiol. 164 (10) (2006) 936.

[25] S. Busenberg, C. Castillo-Chavez, A general solution of the problem of mixing of
subpopulations and its application to risk- and age-structured epidemic
models for the spread of AIDS, I.M.A. J. Math. Appl. Med. Biol. 8 (1991) 1.

[26] U.S. Census Bureau, Monthly Postcensal Resident Population, 2006. <http://
www.census.gov/popest/national/asrh/2006_nat_res.html> (11.01.2007).

[27] G. Cowan, Statistical Data Analysis, Oxford Science Publications, 1998.
[28] F. James, Minuit Reference Manual, Version 94.1, CERN Program Library Long

Writeup D506, 1994.
[29] G. Chowell, M.A. Miller, C. Viboud, Seasonal influenza in the United States,

France, and Australia; transmission and prospects for control, Epidemiol.
Infect. 136 (6) (2008) 852.

[30] F. Carrat, et al., Time lines of infection and disease in human influenza: a
review of volunteer challenge studies, Am. J. Epidemiol. 167(7) (2008) 775.

[31] R.B. Couch, R.G. Douglas, D.S. Fedson, J.A. Kasel, Correlated studies of a
recombinant influenza-virus vaccine. III. Protection against experimental
influenza in man, J. Infect. Dis. 124 (5) (1971) 473.

[32] A.B. Bjornson, M.A. Mellencamp, G.M. Schiff, Complement is activated in the
upper respiratory tract during influenza virus infection, Am. Rev. Respir. Dis.
143 (1991) 1062.

[33] G. Sertsou et al., Key transmission parameters of an institutional outbreak
during the 1918 influenza pandemic estimated by mathematical modelling,
Theor. Biol. Med. Model. 3 (2006) 38.

[34] J.C. King Jr. et al., Laboratory and epidemiological assessment of a recent
influenza B outbreak, J. Med. Virol. 25 (3) (1988) 361.

[35] A.G. Elder et al., Incidence and recall of influenza in a cohort of Glasgow
healthcare workers during the 1993-4 epidemic: results of serum testing and
questionnaire, BMJ 313 (7067) (1996) 1241.

[36] A. Flahault, X. de Lamballerie, T. Hanslik, N. Salez, Symptomatic infections less
frequent with H1N1 pdm than with seasonal strains, PLoS Curr Influenza
(2009) RRN1140.

[37] B.V. Tandel et al., Seroepidemiology of pandemic influenza A (H1N1) 2009
virus infections in Pune, India, BMC Infect. Dis. 10 (2010) 255.

[38] Centers for Disease Control and Prevention, Prevention and Control of
Influenza: Recommendations of the Advisory Committee on Immunization
Practices (ACIP). <www.cdc.gov/mmwr/preview/mmwrhtml/
rr57e717a1.htm>, 2008.

[39] N. Ikonen et al., High frequency of crossreacting antibodies against 2009
pandemic influenza A(H1N1) virus among the elderly in Finland, Euro Surveill.
15 (5) (2010) pii: 19478.

[40] T.A. Reichart et al., The japanese experience with vaccinating schoolchildren
against influenza, N. Engl. J. Med. 344 (12) (2001) 889.

[41] N. Sugaya, Y. Takeuchi, Mass vaccination of schoolchildren against influenza
and its impact on the influenza-associated mortality rate among children in
Japan, Clin. Infect. Dis. 41 (2005) 939.

[42] S. Cohen, W.J. Doyle, D.P. Stoner, B.S. Rabin, J.M. Gwaitney, Social ties and
susceptibility to the common cold, JAMA 277 (24) (1997) 1940.

[43] S. Cohen, W.J. Doyle, R. Turner, C.M. Alper, D.P. Skoner, Sociability and
susceptibility to the common cold, Am. Psychol. Soc. 14 (5) (2003) 389.

[44] S.Y. Del Valle et al., Mixing patterns between age groups in social networks,
Soc. Networks 29 (2007) 539.

http://www.cdc.gov/NCHS/nhis/nhis_2007_data_release.htm
http://www.R-project.org
http://www.census.gov/popest/national/asrh/2006_nat_res.html
http://www.census.gov/popest/national/asrh/2006_nat_res.html
http://www.cdc.gov/mmwr/preview/mmwrhtml/rr57e717a1.htm
http://www.cdc.gov/mmwr/preview/mmwrhtml/rr57e717a1.htm

	Social contact patterns and control strategies for influenza in the elderly
	Introduction
	Methods
	Model
	Parameterization of the contact matrix

	Results
	Discussion and summary
	Acknowledgements
	References


