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Discussion comments on: the use of auxiliary
variables in capture- recapture modelling.
An overview

GARY C. WHITE, Department of Fishery and Wildlife B iology, Colorado State

University, USA

The incorporation of auxiliary variables into capture- recapture models provides
the biologist the opportunity to explore many biological hypotheses, and thus
provides a powerful technique for extending the analysis of encounter history data.
However, cause-and-eþect relationships cannot be gained without experimental
manipulation of the system. That is, even though an auxiliary variable in a capture-
recapture model may provide a good predictor of survival, unless the auxiliary
variable is part of a manipulative investigation, the relationship is only correlative
and lacks the stronger frame of inference provided by experimental manipulation.
Opportunities to incorporate covariates into designed, manipulative experiments
should not be declined.

The Achilles’ heel of using auxiliary variables in capture- recapture modelling is
assessing goodness-of-®t. With the procedures presented by Burnham & Anderson
(1998), quasi-likelihood approaches are used for model selection and for adjust-
ments to the variance of the estimates to correct for over-dispersion of the capture-
recapture data. An estimate of the over-dispersion parameter, c, is necessary to
make these adjustments. However, no general, robust, procedures are currently
available for estimating c. Although much of the goodness-of-®t literature concerns
testing the hypothesis of lack of ®t, I instead view the problem as estimation of c.

Logistic regression also suþers from the detriment of no generally robust
methodology to estimate c. The goodness-of-®t procedure derived from likelihood
theory suggests the deviance of the model is chi-square distributed with degrees of
freedom equal to sample size of the data minus the number of estimated parameters
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(McCullagh & Nelder, 1989). The chi-square distribution follows because the
deviance is the likelihood ratio test statistic of a saturated model, with the number
of parameters equal to the sample size versus the ®tted model. However, the
deviance statistic is known not to be chi-square distributed for small samples
(McCullagh & Nelder, 1989), and the resulting estimate cÃ 5 deviance/df is a biased
estimate of the true overdispersion. The Hosmer- Lemeshow test (Hosmer &
Lemeshow, 1989) provides an alternative procedure for goodness-of-®t in logistic
regression, but suþers from the subjectivity of breaking a continuous variable into
discrete classes. Although apparently a useful approach for logistic regression, the
test has not been extended to handle capture- recapture data.

The parametric bootstrap procedure currently implemented in Program MARK
(White & Burnham, 1999) does not provide an unbiased estimate of c, based on
simulations with the Cormack- Jolly- Seber model. Simulated data with c 5 2 were
generated for 5, 10 and 15 occasions, u equals 0.5 and 0.8, p equals 0.5, with 100
releases on each occasion. The 100 sets of simulated data for each of the six
scenarios included extra binomial variation by simulating a single encounter history,
but recording two animals as experiencing that history. Results shown in Fig. 1
suggest a negative bias for the bootstrap procedure, whereas the goodness-of-®t
tests provided in Program R ELEASE (Burnham et al., 1987) provide reasonable
estimates of c near the expected value of 2.

Another diýculty with incorporating covariates into capture- recapture models
that allow estimation of population size, N , is to model N directly as a function of
covariates, e.g. habitat characteristics. For likelihood-based estimators, NÃ > M t +1,
i.e. the estimate must be the number of marked animals in the population.
Typically, to implement this constraint, numerical optimization is performed on
the quantity fÃ0 5 NÃ 2 M t +1, i.e. the estimated number of animals never captured.
Incorporation of covariates to model NÃ is not possible directly in software packages

Fig. 1. Simulation results for estimates of the overdispersion parameter (c) from chi-square tables of
Program RELEASE (Burnham et al., 1987) and the parametric bootstrap procedure of Program MARK

(White & Burnham, 1999). Each scenario consists of 100 replications.
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such as MARK (White & Burnham, 1999) because f0 is being modelled instead
of N .

Another issue concerns the loss of eýciency of models that do not include N in
the likelihood and condition on the animals observed (e.g. Huggins, 1989, 1991;
Alho, 1990) and models that include N in the likelihood (Otis et al., 1978, and
references therein). The Huggins models provide a much more ¯exible framework
to incorporate auxiliary information, particularly individual-speci®c information,
into the model.

To evaluate the diþerence in bias and eýciency of the Huggins and unconditional
likelihood models, I conducted a small simulation study with 2000 replications of
the M 0 estimator of Otis et al. (1978) with N 5 500, for 5 occasions, and 9 values
initial capture and recapture rates of p 5 c 5 0.0690, 0.0970, 0.1294, 0.1674,
0.2140, 0.2752, 0.3690, 0.4507 and 0.6019. These values correspond to the
fraction of the population seen during the 5 occasions [ p* 5 1 2 (1 2p)5] of 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99. Results for percentage relative bias and
standard deviation of NÃ are shown in Figs 2 and 3, respectively. Both estimators
become biased high as the proportion of the population decreases, although this
bias is greater for the Huggins estimator. As expected from likelihood theory, the
Huggins estimator is also less eýcient, although not markedly so. Basically, neither
estimator performs well for small capture probabilities.

In summary, three diýculties with incorporating auxiliary variables into capture-
recapture models have been considered: estimation of over-dispersion, constraints
on NÃ , and the performance of estimators when the likelihood is conditioned on
only the animals observed. The general estimation of over-dispersion is an unsolved
issue. Constraints on NÃ may be possible with more robust software. Lastly, the
Huggins estimator performs reasonably well with data where at least 60% of the
population was captured.

Fig. 2. Percentage relative bias of the Huggins (1989, 1991) and unconditional likelihood (Otis et al.,
1978) estimators as a function of the proportion of the population captured. Each scenario was

simulated 2000 times.
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Fig. 3. Standard deviation of the estimates of population size for the Huggins (1989, 1991) and

unconditional likelihood (Otis et al., 1978) estimators as a function of the proportion of the population
captured. Each scenario was simulated 2000 times.
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